Cargando…
Deep learning of dynamically responsive chemical Hamiltonians with semiempirical quantum mechanics
Conventional machine-learning (ML) models in computational chemistry learn to directly predict molecular properties using quantum chemistry only for reference data. While these heuristic ML methods show quantum-level accuracy with speeds several orders of magnitude faster than traditional quantum ch...
Autores principales: | Zhou, Guoqing, Lubbers, Nicholas, Barros, Kipton, Tretiak, Sergei, Nebgen, Benjamin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271210/ https://www.ncbi.nlm.nih.gov/pubmed/35776544 http://dx.doi.org/10.1073/pnas.2120333119 |
Ejemplares similares
-
Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
por: Smith, Justin S., et al.
Publicado: (2019) -
Machine Learning
Models Capture Plasmon Dynamics in
Ag Nanoparticles
por: Habib, Adela, et al.
Publicado: (2023) -
Predicting phosphorescence energies and inferring wavefunction localization with machine learning
por: Sifain, Andrew E., et al.
Publicado: (2021) -
The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules
por: Smith, Justin S., et al.
Publicado: (2020) -
Machine Learning of Parameters for Accurate Semiempirical
Quantum Chemical Calculations
por: Dral, Pavlo O., et al.
Publicado: (2015)