Cargando…
Clinical evaluation of deep learning–based clinical target volume three-channel auto-segmentation algorithm for adaptive radiotherapy in cervical cancer
OBJECTIVES: Accurate contouring of the clinical target volume (CTV) is a key element of radiotherapy in cervical cancer. We validated a novel deep learning (DL)-based auto-segmentation algorithm for CTVs in cervical cancer called the three-channel adaptive auto-segmentation network (TCAS). METHODS:...
Autores principales: | Ma, Chen-ying, Zhou, Ju-ying, Xu, Xiao-ting, Qin, Song-bing, Han, Miao-fei, Cao, Xiao-huan, Gao, Yao-zong, Xu, Lu, Zhou, Jing-jie, Zhang, Wei, Jia, Le-cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271246/ https://www.ncbi.nlm.nih.gov/pubmed/35810273 http://dx.doi.org/10.1186/s12880-022-00851-0 |
Ejemplares similares
-
Deep learning‐based auto‐segmentation of clinical target volumes for radiotherapy treatment of cervical cancer
por: Ma, Chen‐Ying, et al.
Publicado: (2021) -
The clinical evaluation of atlas-based auto-segmentation for automatic contouring during cervical cancer radiotherapy
por: Li, Yi, et al.
Publicado: (2022) -
Comprehensive clinical evaluation of deep learning-based auto-segmentation for radiotherapy in patients with cervical cancer
por: Chung, Seung Yeun, et al.
Publicado: (2023) -
Evaluation of deep learning‐based auto‐segmentation algorithms for delineating clinical target volume and organs at risk involving data for 125 cervical cancer patients
por: Wang, Zhi, et al.
Publicado: (2020) -
Clinical Target Volume Auto-Segmentation of Esophageal Cancer for Radiotherapy After Radical Surgery Based on Deep Learning
por: Cao, Ruifen, et al.
Publicado: (2021)