Cargando…
A narrative review of deep learning applications in lung cancer research: from screening to prognostication
BACKGROUND AND OBJECTIVE: Deep learning (DL) algorithms have been developed for various tasks, including lung nodule detection on chest radiographs or lung cancer computed tomography screening, potential candidate selection in lung cancer screening, malignancy prediction for indeterminate pulmonary...
Autores principales: | Lee, Jong Hyuk, Hwang, Eui Jin, Kim, Hyungjin, Park, Chang Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271435/ https://www.ncbi.nlm.nih.gov/pubmed/35832457 http://dx.doi.org/10.21037/tlcr-21-1012 |
Ejemplares similares
-
Clinical Implementation of Deep Learning in Thoracic Radiology: Potential Applications and Challenges
por: Hwang, Eui Jin, et al.
Publicado: (2020) -
Effects of Expert-Determined Reference Standards in Evaluating the Diagnostic Performance of a Deep Learning Model: A Malignant Lung Nodule Detection Task on Chest Radiographs
por: Huh, Jung Eun, et al.
Publicado: (2023) -
Implementation of a Deep Learning-Based Computer-Aided Detection System for the Interpretation of Chest Radiographs in Patients Suspected for COVID-19
por: Hwang, Eui Jin, et al.
Publicado: (2020) -
Deep learning computer-aided detection system for pneumonia in febrile neutropenia patients: a diagnostic cohort study
por: Hwang, Eui Jin, et al.
Publicado: (2021) -
Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs
por: Nam, Ju Gang, et al.
Publicado: (2021)