Cargando…

Assessing the impact of SARS-CoV-2 infection on the dynamics of dengue and HIV via fractional derivatives

A new non-integer order mathematical model for SARS-CoV-2, Dengue and HIV co-dynamics is designed and studied. The impact of SARS-CoV-2 infection on the dynamics of dengue and HIV is analyzed using the tools of fractional calculus. The existence and uniqueness of solution of the proposed model are e...

Descripción completa

Detalles Bibliográficos
Autores principales: Omame, Andrew, Abbas, Mujahid, Abdel-Aty, Abdel-Haleem
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271450/
https://www.ncbi.nlm.nih.gov/pubmed/35844899
http://dx.doi.org/10.1016/j.chaos.2022.112427
Descripción
Sumario:A new non-integer order mathematical model for SARS-CoV-2, Dengue and HIV co-dynamics is designed and studied. The impact of SARS-CoV-2 infection on the dynamics of dengue and HIV is analyzed using the tools of fractional calculus. The existence and uniqueness of solution of the proposed model are established employing well known Banach contraction principle. The Ulam-Hyers and generalized Ulam-Hyers stability of the model is also presented. We have applied the Laplace Adomian decomposition method to investigate the model with the help of three different fractional derivatives, namely: Caputo, Caputo-Fabrizio and Atangana-Baleanu derivatives. Stability analyses of the iterative schemes are also performed. The model fitting using the three fractional derivatives was carried out using real data from Argentina. Simulations were performed with each non-integer derivative and the results thus obtained are compared. Furthermore, it was concluded that efforts to keep the spread of SARS-CoV-2 low will have a significant impact in reducing the co-infections of SARS-CoV-2 and dengue or SARS-COV-2 and HIV. We also highlighted the impact of three different fractional derivatives in analyzing complex models dealing with the co-dynamics of different diseases.