Cargando…
Decoding Intracranial EEG With Machine Learning: A Systematic Review
Advances in intracranial electroencephalography (iEEG) and neurophysiology have enabled the study of previously inaccessible brain regions with high fidelity temporal and spatial resolution. Studies of iEEG have revealed a rich neural code subserving healthy brain function and which fails in disease...
Autores principales: | Mirchi, Nykan, Warsi, Nebras M., Zhang, Frederick, Wong, Simeon M., Suresh, Hrishikesh, Mithani, Karim, Erdman, Lauren, Ibrahim, George M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271576/ https://www.ncbi.nlm.nih.gov/pubmed/35832872 http://dx.doi.org/10.3389/fnhum.2022.913777 |
Ejemplares similares
-
Machine Learning Approaches for MDD Detection and Emotion Decoding Using EEG Signals
por: Duan, Lijuan, et al.
Publicado: (2020) -
Cross-Dataset Variability Problem in EEG Decoding With Deep Learning
por: Xu, Lichao, et al.
Publicado: (2020) -
A State-of-the-Art Review of EEG-Based Imagined Speech Decoding
por: Lopez-Bernal, Diego, et al.
Publicado: (2022) -
Decoding EEG Brain Activity for Multi-Modal Natural Language Processing
por: Hollenstein, Nora, et al.
Publicado: (2021) -
Decoding the neural signatures of valence and arousal from portable EEG headset
por: Garg, Nikhil, et al.
Publicado: (2022)