Cargando…

Better Bioactivity, Cerebral Metabolism and Pharmacokinetics of Natural Medicine and Its Advanced Version

Currently, many people are afflicted by cerebral diseases that cause dysfunction in the brain and perturb normal daily life of people. Cerebral diseases are greatly affected by cerebral metabolism, including the anabolism and catabolism of neurotransmitters, hormones, neurotrophic molecules and othe...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Jiaxi, Zhong, Cailing, Wang, Tingting, He, Dan, Lu, Luyang, Yang, Jie, Yuan, Ziyi, Zhang, Jingqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271619/
https://www.ncbi.nlm.nih.gov/pubmed/35833035
http://dx.doi.org/10.3389/fphar.2022.937075
Descripción
Sumario:Currently, many people are afflicted by cerebral diseases that cause dysfunction in the brain and perturb normal daily life of people. Cerebral diseases are greatly affected by cerebral metabolism, including the anabolism and catabolism of neurotransmitters, hormones, neurotrophic molecules and other brain-specific chemicals. Natural medicines (NMs) have the advantages of low cost and low toxicity. NMs are potential treatments for cerebral diseases due to their ability to regulate cerebral metabolism. However, most NMs have low bioavailability due to their low solubility/permeability. The study is to summarize the better bioactivity, cerebral metabolism and pharmacokinetics of NMs and its advanced version. This study sums up research articles on the NMs to treat brain diseases. NMs affect cerebral metabolism and the related mechanisms are revealed. Nanotechnologies are applied to deliver NMs. Appropriate delivery systems (exosomes, nanoparticles, liposomes, lipid polymer hybrid nanoparticles, nanoemulsions, protein conjugation and nanosuspensions, etc.) provide better pharmacological and pharmacokinetic characteristics of NMs. The structure-based metabolic reactions and enzyme-modulated catalytic reactions related to advanced versions of NMs alter the pharmacological activities of NMs.