Cargando…
EEG-Based Brain Network Analysis of Chronic Stroke Patients After BCI Rehabilitation Training
Traditional rehabilitation strategies become difficult in the chronic phase stage of stroke prognosis. Brain–computer interface (BCI) combined with external devices may improve motor function in chronic stroke patients, but it lacks comprehensive assessments of neurological changes regarding functio...
Autores principales: | Zhan, Gege, Chen, Shugeng, Ji, Yanyun, Xu, Ying, Song, Zuoting, Wang, Junkongshuai, Niu, Lan, Bin, Jianxiong, Kang, Xiaoyang, Jia, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271662/ https://www.ncbi.nlm.nih.gov/pubmed/35832876 http://dx.doi.org/10.3389/fnhum.2022.909610 |
Ejemplares similares
-
Electroacupuncture Alters BCI-Based Brain Network in Stroke Patients
por: Song, Zuoting, et al.
Publicado: (2022) -
Co-adaptive Training Improves Efficacy of a Multi-Day EEG-Based Motor Imagery BCI Training
por: Abu-Rmileh, Amjad, et al.
Publicado: (2019) -
Toward EEG-Based BCI Applications for Industry 4.0: Challenges and Possible Applications
por: Douibi, Khalida, et al.
Publicado: (2021) -
BCI-Based Consumers' Choice Prediction From EEG Signals: An Intelligent Neuromarketing Framework
por: Mashrur, Fazla Rabbi, et al.
Publicado: (2022) -
Hybrid EEG-fNIRS BCI Fusion Using Multi-Resolution Singular Value Decomposition (MSVD)
por: Khan, Muhammad Umer, et al.
Publicado: (2020)