Cargando…
Predicting 3D chromatin interactions from DNA sequence using Deep Learning
Gene regulation in eukaryotes is profoundly shaped by the 3D organization of chromatin within the cell nucleus. Distal regulatory interactions between enhancers and their target genes are widespread and many causal loci underlying heritable agricultural or clinical traits have been mapped to distal...
Autores principales: | Piecyk, Robert S., Schlegel, Luca, Johannes, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271978/ https://www.ncbi.nlm.nih.gov/pubmed/35832620 http://dx.doi.org/10.1016/j.csbj.2022.06.047 |
Ejemplares similares
-
Deep learning frameworks for protein–protein interaction prediction
por: Hu, Xiaotian, et al.
Publicado: (2022) -
From sequence to function through structure: Deep learning for protein design
por: Ferruz, Noelia, et al.
Publicado: (2022) -
3D chromatin structure changes during spermatogenesis and oogenesis
por: Zhang, Shiqiang, et al.
Publicado: (2022) -
Mitochondrial DNA variants in inclusion body myositis characterized by deep sequencing
por: Hedberg‐Oldfors, Carola, et al.
Publicado: (2021) -
DeepTACT: predicting 3D chromatin contacts via bootstrapping deep learning
por: Li, Wenran, et al.
Publicado: (2019)