Cargando…

Understanding the Nature of Hybrid Sterility and Divergence of Asian Cultivated Rice

Intraspecific hybrid sterility is a common form of postzygotic reproductive isolation in Asian cultivated rice, which is also the major obstacle to utilize the strong heterosis in the rice breeding program. Here, we review recent progress in classification and hybrid sterility in Asian cultivated ri...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yu, Wang, Jie, Pu, Qiuhong, Yang, Ying, Lv, Yonggang, Zhou, Jiawu, Li, Jing, Deng, Xianneng, Wang, Min, Tao, Dayun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272003/
https://www.ncbi.nlm.nih.gov/pubmed/35832226
http://dx.doi.org/10.3389/fpls.2022.908342
Descripción
Sumario:Intraspecific hybrid sterility is a common form of postzygotic reproductive isolation in Asian cultivated rice, which is also the major obstacle to utilize the strong heterosis in the rice breeding program. Here, we review recent progress in classification and hybrid sterility in Asian cultivated rice. A genome-wide analysis of numerous wild relatives of rice and Asian cultivated rice has provided insights into the origin and differentiation of Asian cultivated rice, and divided Asian cultivated rice into five subgroups. More than 40 conserved and specific loci were identified to be responsible for the hybrid sterility between subgroup crosses by genetic mapping, which also contributed to the divergence of Asian cultivated rice. Most of the studies are focused on the sterile barriers between indica and japonica crosses, ignoring hybrid sterility among other subgroups, leading to neither a systematical understanding of the nature of hybrid sterility and subgroup divergence, nor effectively utilizing strong heterosis between the subgroups in Asian cultivated rice. Future studies will aim at identifying and characterizing genes for hybrid sterility and segregation distortion, comparing and understanding the molecular mechanism of hybrid sterility, and drawing a blueprint for intraspecific hybrid sterility loci derived from cross combinations among the five subgroups. These studies would provide scientific and accurate guidelines to overcome the intraspecific hybrid sterility according to the parent subgroup type identification, allowing the utilization of heterosis among subgroups, also helping us unlock the mysterious relationship between hybrid sterility and Asian cultivated rice divergence.