Cargando…
Beneficial Immune Regulation by Biological Response Modifier Glucans in COVID-19 and Their Envisaged Potentials in the Management of Sepsis
Sepsis is a life-threatening condition caused by an abnormal immune response induced by infection with no approved or specific therapeutic options. We present our perspectives for the therapeutic management of sepsis through a four-way approach: (1) infection control through immune enhancement; (2)...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272021/ https://www.ncbi.nlm.nih.gov/pubmed/35833122 http://dx.doi.org/10.3389/fimmu.2022.870632 |
_version_ | 1784744804791353344 |
---|---|
author | Preethy, Senthilkumar Raghavan, Kadalraja Dedeepiya, Vidyasagar Devaprasad Surya Prakash, Vaddi Ikewaki, Nobunao Ikeue, Yasunori Nagataki, Mitsuru Iwasaki, Masaru Senthilkumar, Rajappa Abraham, Samuel J. K. |
author_facet | Preethy, Senthilkumar Raghavan, Kadalraja Dedeepiya, Vidyasagar Devaprasad Surya Prakash, Vaddi Ikewaki, Nobunao Ikeue, Yasunori Nagataki, Mitsuru Iwasaki, Masaru Senthilkumar, Rajappa Abraham, Samuel J. K. |
author_sort | Preethy, Senthilkumar |
collection | PubMed |
description | Sepsis is a life-threatening condition caused by an abnormal immune response induced by infection with no approved or specific therapeutic options. We present our perspectives for the therapeutic management of sepsis through a four-way approach: (1) infection control through immune enhancement; (2) immune suppression during the initial hyper-inflammatory phase; (3) balanced immune-modulation to counter the later immune-paralysis phase; and (4) advantageous effects on metabolic and coagulation parameters throughout. COVID-19 is a virus-triggered, accelerated sepsis-like reaction that is associated with the rapid progress of an inflammatory cascade involving a cytokine storm and multiorgan failure. Here, we discuss the potential of the biological response modifiers, β-glucans (BRMGs), in the management of sepsis based on their beneficial effects on inflammatory-immune events in COVID-19 clinical studies. In COVID-19 patients, apart from metabolic regulation, BRMGs, derived from a black yeast, Aureobasidium pullulans strain AFO-202, have been reported to stimulate immune responses. BRMGs, produced by another strain (N-163) of A. pullulans, have been implicated in the beneficial regulation of inflammatory markers and immunity, namely IL-6, C-reactive protein (CRP), D-Dimer, ferritin, neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-C-reactive protein ratio (LCR), leucocyte-to-C-reactive protein ratio (LeCR), and leukocyte-to-IL-6 ratio (LeIR). Agents such as these β-glucans, which are safe as they have been widely consumed by humans for decades, have potential as adjuncts for the prevention and management of sepsis as they exert their beneficial effects across the spectrum of processes and factors involved in sepsis pathology, including, but not limited to, metabolism, infection, inflammation, immune modulation, immune enhancement, and gut microbiota. |
format | Online Article Text |
id | pubmed-9272021 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92720212022-07-12 Beneficial Immune Regulation by Biological Response Modifier Glucans in COVID-19 and Their Envisaged Potentials in the Management of Sepsis Preethy, Senthilkumar Raghavan, Kadalraja Dedeepiya, Vidyasagar Devaprasad Surya Prakash, Vaddi Ikewaki, Nobunao Ikeue, Yasunori Nagataki, Mitsuru Iwasaki, Masaru Senthilkumar, Rajappa Abraham, Samuel J. K. Front Immunol Immunology Sepsis is a life-threatening condition caused by an abnormal immune response induced by infection with no approved or specific therapeutic options. We present our perspectives for the therapeutic management of sepsis through a four-way approach: (1) infection control through immune enhancement; (2) immune suppression during the initial hyper-inflammatory phase; (3) balanced immune-modulation to counter the later immune-paralysis phase; and (4) advantageous effects on metabolic and coagulation parameters throughout. COVID-19 is a virus-triggered, accelerated sepsis-like reaction that is associated with the rapid progress of an inflammatory cascade involving a cytokine storm and multiorgan failure. Here, we discuss the potential of the biological response modifiers, β-glucans (BRMGs), in the management of sepsis based on their beneficial effects on inflammatory-immune events in COVID-19 clinical studies. In COVID-19 patients, apart from metabolic regulation, BRMGs, derived from a black yeast, Aureobasidium pullulans strain AFO-202, have been reported to stimulate immune responses. BRMGs, produced by another strain (N-163) of A. pullulans, have been implicated in the beneficial regulation of inflammatory markers and immunity, namely IL-6, C-reactive protein (CRP), D-Dimer, ferritin, neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-C-reactive protein ratio (LCR), leucocyte-to-C-reactive protein ratio (LeCR), and leukocyte-to-IL-6 ratio (LeIR). Agents such as these β-glucans, which are safe as they have been widely consumed by humans for decades, have potential as adjuncts for the prevention and management of sepsis as they exert their beneficial effects across the spectrum of processes and factors involved in sepsis pathology, including, but not limited to, metabolism, infection, inflammation, immune modulation, immune enhancement, and gut microbiota. Frontiers Media S.A. 2022-06-27 /pmc/articles/PMC9272021/ /pubmed/35833122 http://dx.doi.org/10.3389/fimmu.2022.870632 Text en Copyright © 2022 Preethy, Raghavan, Dedeepiya, Surya Prakash, Ikewaki, Ikeue, Nagataki, Iwasaki, Senthilkumar and Abraham https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Preethy, Senthilkumar Raghavan, Kadalraja Dedeepiya, Vidyasagar Devaprasad Surya Prakash, Vaddi Ikewaki, Nobunao Ikeue, Yasunori Nagataki, Mitsuru Iwasaki, Masaru Senthilkumar, Rajappa Abraham, Samuel J. K. Beneficial Immune Regulation by Biological Response Modifier Glucans in COVID-19 and Their Envisaged Potentials in the Management of Sepsis |
title | Beneficial Immune Regulation by Biological Response Modifier Glucans in COVID-19 and Their Envisaged Potentials in the Management of Sepsis |
title_full | Beneficial Immune Regulation by Biological Response Modifier Glucans in COVID-19 and Their Envisaged Potentials in the Management of Sepsis |
title_fullStr | Beneficial Immune Regulation by Biological Response Modifier Glucans in COVID-19 and Their Envisaged Potentials in the Management of Sepsis |
title_full_unstemmed | Beneficial Immune Regulation by Biological Response Modifier Glucans in COVID-19 and Their Envisaged Potentials in the Management of Sepsis |
title_short | Beneficial Immune Regulation by Biological Response Modifier Glucans in COVID-19 and Their Envisaged Potentials in the Management of Sepsis |
title_sort | beneficial immune regulation by biological response modifier glucans in covid-19 and their envisaged potentials in the management of sepsis |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272021/ https://www.ncbi.nlm.nih.gov/pubmed/35833122 http://dx.doi.org/10.3389/fimmu.2022.870632 |
work_keys_str_mv | AT preethysenthilkumar beneficialimmuneregulationbybiologicalresponsemodifierglucansincovid19andtheirenvisagedpotentialsinthemanagementofsepsis AT raghavankadalraja beneficialimmuneregulationbybiologicalresponsemodifierglucansincovid19andtheirenvisagedpotentialsinthemanagementofsepsis AT dedeepiyavidyasagardevaprasad beneficialimmuneregulationbybiologicalresponsemodifierglucansincovid19andtheirenvisagedpotentialsinthemanagementofsepsis AT suryaprakashvaddi beneficialimmuneregulationbybiologicalresponsemodifierglucansincovid19andtheirenvisagedpotentialsinthemanagementofsepsis AT ikewakinobunao beneficialimmuneregulationbybiologicalresponsemodifierglucansincovid19andtheirenvisagedpotentialsinthemanagementofsepsis AT ikeueyasunori beneficialimmuneregulationbybiologicalresponsemodifierglucansincovid19andtheirenvisagedpotentialsinthemanagementofsepsis AT nagatakimitsuru beneficialimmuneregulationbybiologicalresponsemodifierglucansincovid19andtheirenvisagedpotentialsinthemanagementofsepsis AT iwasakimasaru beneficialimmuneregulationbybiologicalresponsemodifierglucansincovid19andtheirenvisagedpotentialsinthemanagementofsepsis AT senthilkumarrajappa beneficialimmuneregulationbybiologicalresponsemodifierglucansincovid19andtheirenvisagedpotentialsinthemanagementofsepsis AT abrahamsamueljk beneficialimmuneregulationbybiologicalresponsemodifierglucansincovid19andtheirenvisagedpotentialsinthemanagementofsepsis |