Cargando…

Using deep learning to detect patients at risk for prostate cancer despite benign biopsies

Routine transrectal ultrasound-guided systematic prostate biopsy only samples a small volume of the prostate and tumors between biopsy cores can be missed, leading to low sensitivity to detect clinically relevant prostate cancers (PCa). Deep learning may enable detection of PCa despite benign biopsi...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Bojing, Wang, Yinxi, Weitz, Philippe, Lindberg, Johan, Hartman, Johan, Wang, Wanzhong, Egevad, Lars, Grönberg, Henrik, Eklund, Martin, Rantalainen, Mattias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272383/
https://www.ncbi.nlm.nih.gov/pubmed/35832894
http://dx.doi.org/10.1016/j.isci.2022.104663
_version_ 1784744863536775168
author Liu, Bojing
Wang, Yinxi
Weitz, Philippe
Lindberg, Johan
Hartman, Johan
Wang, Wanzhong
Egevad, Lars
Grönberg, Henrik
Eklund, Martin
Rantalainen, Mattias
author_facet Liu, Bojing
Wang, Yinxi
Weitz, Philippe
Lindberg, Johan
Hartman, Johan
Wang, Wanzhong
Egevad, Lars
Grönberg, Henrik
Eklund, Martin
Rantalainen, Mattias
author_sort Liu, Bojing
collection PubMed
description Routine transrectal ultrasound-guided systematic prostate biopsy only samples a small volume of the prostate and tumors between biopsy cores can be missed, leading to low sensitivity to detect clinically relevant prostate cancers (PCa). Deep learning may enable detection of PCa despite benign biopsies. We included 14,354 hematoxylin-eosin stained benign prostate biopsies from 1,508 men in two groups: men without established PCa diagnosis and men with at least one core biopsy diagnosed with PCa. A 10-Convolutional Neural Network ensemble was optimized to distinguish benign biopsies from benign men or patients with PCa. Area under the receiver operating characteristic curve was estimated at 0.739 (bootstrap 95% CI:0.682–0.796) on man level in the held-out test set. At the specificity of 0.90, the model sensitivity was 0.348. The proposed model can detect men with risk of missed PCa and has the potential to reduce false negatives and to indicate men who could benefit from rebiopsies.
format Online
Article
Text
id pubmed-9272383
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-92723832022-07-12 Using deep learning to detect patients at risk for prostate cancer despite benign biopsies Liu, Bojing Wang, Yinxi Weitz, Philippe Lindberg, Johan Hartman, Johan Wang, Wanzhong Egevad, Lars Grönberg, Henrik Eklund, Martin Rantalainen, Mattias iScience Article Routine transrectal ultrasound-guided systematic prostate biopsy only samples a small volume of the prostate and tumors between biopsy cores can be missed, leading to low sensitivity to detect clinically relevant prostate cancers (PCa). Deep learning may enable detection of PCa despite benign biopsies. We included 14,354 hematoxylin-eosin stained benign prostate biopsies from 1,508 men in two groups: men without established PCa diagnosis and men with at least one core biopsy diagnosed with PCa. A 10-Convolutional Neural Network ensemble was optimized to distinguish benign biopsies from benign men or patients with PCa. Area under the receiver operating characteristic curve was estimated at 0.739 (bootstrap 95% CI:0.682–0.796) on man level in the held-out test set. At the specificity of 0.90, the model sensitivity was 0.348. The proposed model can detect men with risk of missed PCa and has the potential to reduce false negatives and to indicate men who could benefit from rebiopsies. Elsevier 2022-06-23 /pmc/articles/PMC9272383/ /pubmed/35832894 http://dx.doi.org/10.1016/j.isci.2022.104663 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Liu, Bojing
Wang, Yinxi
Weitz, Philippe
Lindberg, Johan
Hartman, Johan
Wang, Wanzhong
Egevad, Lars
Grönberg, Henrik
Eklund, Martin
Rantalainen, Mattias
Using deep learning to detect patients at risk for prostate cancer despite benign biopsies
title Using deep learning to detect patients at risk for prostate cancer despite benign biopsies
title_full Using deep learning to detect patients at risk for prostate cancer despite benign biopsies
title_fullStr Using deep learning to detect patients at risk for prostate cancer despite benign biopsies
title_full_unstemmed Using deep learning to detect patients at risk for prostate cancer despite benign biopsies
title_short Using deep learning to detect patients at risk for prostate cancer despite benign biopsies
title_sort using deep learning to detect patients at risk for prostate cancer despite benign biopsies
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272383/
https://www.ncbi.nlm.nih.gov/pubmed/35832894
http://dx.doi.org/10.1016/j.isci.2022.104663
work_keys_str_mv AT liubojing usingdeeplearningtodetectpatientsatriskforprostatecancerdespitebenignbiopsies
AT wangyinxi usingdeeplearningtodetectpatientsatriskforprostatecancerdespitebenignbiopsies
AT weitzphilippe usingdeeplearningtodetectpatientsatriskforprostatecancerdespitebenignbiopsies
AT lindbergjohan usingdeeplearningtodetectpatientsatriskforprostatecancerdespitebenignbiopsies
AT hartmanjohan usingdeeplearningtodetectpatientsatriskforprostatecancerdespitebenignbiopsies
AT wangwanzhong usingdeeplearningtodetectpatientsatriskforprostatecancerdespitebenignbiopsies
AT egevadlars usingdeeplearningtodetectpatientsatriskforprostatecancerdespitebenignbiopsies
AT gronberghenrik usingdeeplearningtodetectpatientsatriskforprostatecancerdespitebenignbiopsies
AT eklundmartin usingdeeplearningtodetectpatientsatriskforprostatecancerdespitebenignbiopsies
AT rantalainenmattias usingdeeplearningtodetectpatientsatriskforprostatecancerdespitebenignbiopsies