Cargando…
The impact of the global and local awareness diffusion on epidemic transmission considering the heterogeneity of individual influences
In this paper, we propose a coupled awareness—epidemic spreading model considering the heterogeneity of individual influences, which aims to explore the interaction between awareness diffusion and epidemic transmission. The considered heterogeneities of individual influences are threefold: the heter...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272667/ https://www.ncbi.nlm.nih.gov/pubmed/35847410 http://dx.doi.org/10.1007/s11071-022-07640-y |
Sumario: | In this paper, we propose a coupled awareness—epidemic spreading model considering the heterogeneity of individual influences, which aims to explore the interaction between awareness diffusion and epidemic transmission. The considered heterogeneities of individual influences are threefold: the heterogeneity of individual influences in the information layer, the heterogeneity of individual influences in the epidemic layer and the heterogeneity of individual behavioral responses to epidemics. In addition, the individuals’ receptive preference for information and the impacts of individuals’ perceived local awareness ratio and individuals’ perceived epidemic severity on self-protective behavior are included. The epidemic threshold is theoretically established by the microscopic Markov chain approach and the mean-field approach. Results indicate that the critical local and global awareness ratios have two-stage effects on the epidemic threshold. Besides, either the heterogeneity of individual influences in the information layer or the strength of individuals’ responses to epidemics can influence the epidemic threshold with a nonlinear way. However, the heterogeneity of individual influences in the epidemic layer has few effect on the epidemic threshold, but can affects the magnitude of the final infected density. |
---|