Cargando…
ZipHiC: a novel Bayesian framework to identify enriched interactions and experimental biases in Hi-C data
MOTIVATION: Several computational and statistical methods have been developed to analyze data generated through the 3C-based methods, especially the Hi-C. Most of the existing methods do not account for dependency in Hi-C data. RESULTS: Here, we present ZipHiC, a novel statistical method to explore...
Autores principales: | Osuntoki, Itunu G, Harrison, Andrew, Dai, Hongsheng, Bao, Yanchun, Zabet, Nicolae Radu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272800/ https://www.ncbi.nlm.nih.gov/pubmed/35678507 http://dx.doi.org/10.1093/bioinformatics/btac387 |
Ejemplares similares
-
GrapHi-C: graph-based visualization of Hi-C datasets
por: MacKay, Kimberly, et al.
Publicado: (2018) -
scHiCNorm: a software package to eliminate systematic biases in single-cell Hi-C data
por: Liu, Tong, et al.
Publicado: (2018) -
HiConfidence: a novel approach uncovering the biological signal in Hi-C data affected by technical biases
por: Kobets, Victoria A, et al.
Publicado: (2023) -
EnHiC: learning fine-resolution Hi-C contact maps using a generative adversarial framework
por: Hu, Yangyang, et al.
Publicado: (2021) -
Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization
por: Wolff, Joachim, et al.
Publicado: (2020)