Cargando…

Ecological restoration stimulates environmental outcomes but exacerbates water shortage in the Loess Plateau

Restoration is the natural and intervention-assisted set of processes designed to promote and facilitate the recovery of an ecosystem that has been degraded, damaged, or destroyed. However, it can also have an adverse effect on the environment. Thus, assessing an ecological restoration project’s imp...

Descripción completa

Detalles Bibliográficos
Autores principales: Ngaba, Mbezele Junior Yannick, Uwiragiye, Yves, Miao, Hongzhi, Li, Zhiqin, Zhou, Jianbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272815/
https://www.ncbi.nlm.nih.gov/pubmed/35833015
http://dx.doi.org/10.7717/peerj.13658
Descripción
Sumario:Restoration is the natural and intervention-assisted set of processes designed to promote and facilitate the recovery of an ecosystem that has been degraded, damaged, or destroyed. However, it can also have an adverse effect on the environment. Thus, assessing an ecological restoration project’s impact is crucial to determining its success and optimum management strategies. We performed a meta-analysis concerning the environmental outcomes during the years 2000–2015 resulting from the “Grain for Green” Project (GFGP) implementation in the Loess Plateau (LP). Data were gathered from 40 peer-reviewed English-language articles chosen from a pool of 332 articles. The results showed that, on average, GFGP increased forest coverage by 35.7% (95% CI [24.15–47.52%]), and grassland by 1.05% (95% CI [0.8–1.28%]). At the same time, GFGP has a positive impact on soil carbon (C) sequestration, net ecosystem production (NEP), and net primary production (NPP), from the years 2000 to 2015 by an average of 36% (95% CI [28.96–43.18%]), 22.7% (95% CI [9.10–36.79%]), and 13.5% (95% CI [9.44–17.354%]), respectively. Soil erosion, sediment load, runoff coefficient, and water yield were reduced by 13.3% (95% CI [0.27–25.76%]), 21.5% (95% CI [1.50–39.99%]), 22.4% (95% CI [5.28–40.45%]) and 43.3% (95% CI [27.03–82.86%]), respectively, from the years 2000 to 2015. Our results indicate that water supply decreased with the increase of vegetation coverage. Therefore, to balance the needs for green space, GFGP policies and strategies should recover, enhance, and sustain more resilient ecosystems.