Cargando…

Establishment and application of novel culture methods in Marchantia polymorpha: persistent tip growth is required for substrate penetration by rhizoids

A NIMA-related protein kinase, MpNEK1, directs tip growth of rhizoids through microtubule depolymerization in a liverwort Marchantia polymorpha. The Mpnek1 knockouts were shown to develop curly and spiral rhizoids due to the fluctuated direction of growth. Still, physiological roles and mechanisms o...

Descripción completa

Detalles Bibliográficos
Autores principales: Mase, Hikari, Nakagami, Hirofumi, Okamoto, Takashi, Takahashi, Taku, Motose, Hiroyasu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272829/
https://www.ncbi.nlm.nih.gov/pubmed/35832537
http://dx.doi.org/10.1080/19420889.2022.2095137
Descripción
Sumario:A NIMA-related protein kinase, MpNEK1, directs tip growth of rhizoids through microtubule depolymerization in a liverwort Marchantia polymorpha. The Mpnek1 knockouts were shown to develop curly and spiral rhizoids due to the fluctuated direction of growth. Still, physiological roles and mechanisms of MpNEK1-dependent rhizoid tip growth remain to be clarified. Here, we developed novel culture methods to further study rhizoid growth of M. polymorpha, in which plants were grown on vertical plates. We applied the established methods to investigate MpNEK1 function in rhizoid growth. Rhizoids of the wild-type and Mpnek1 plants grew toward the gravity. The aerial rhizoids were longer in Mpnek1 than in the wild type. When the rhizoids were grown on the surface of a cellophane sheet, rhizoid length was comparable between the wild type and Mpnek1, whereas Mpnek1 developed more rhizoids compared to the wild type. We also applied gellan gum, which is more transparent than agar, to analyze rhizoids grown in the medium. Rhizoids of Mpnek1 displayed defect on entering into the solid medium. These results suggest that Mpnek1 rhizoids have the deficiency in invasive tip growth. Thus, stable directional growth is important for rhizoids to get into the soil to anchor plant body and to adsorb water and nutrients. Collectively, our newly designed growth systems are valuable for analyzing rhizoid growth.