Cargando…

Isolation, characterisation and complement fixation activity of acidic polysaccharides from Argemone mexicana used as antimalarials in Mali

CONTEXT: Global studies on Argemone mexicana L. (Papaveraceae) traditionally used against malaria in Mali are limited to its low-mass compounds activities, and little information on its bioactive polysaccharides is available. OBJECTIVE: This study determines the structure and the immunomodulatory ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Dénou, Adama, Togola, Adiaratou, Inngjerdingen, Kari Tvete, Moussavi, Nastaran, Rise, Frode, Zou, Yuan Feng, Dafam, Dalen G., Nep, Elijah I., Ahmed, Abubakar, Alemika, Taiwo E., Diallo, Drissa, Sanogo, Rokia, Paulsen, Berit Smestad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272928/
https://www.ncbi.nlm.nih.gov/pubmed/35797701
http://dx.doi.org/10.1080/13880209.2022.2089691
Descripción
Sumario:CONTEXT: Global studies on Argemone mexicana L. (Papaveraceae) traditionally used against malaria in Mali are limited to its low-mass compounds activities, and little information on its bioactive polysaccharides is available. OBJECTIVE: This study determines the structure and the immunomodulatory activity of polysaccharides from aerial parts of A. mexicana. MATERIALS AND METHODS: Acidic polysaccharides from this plant material named HMAmA1 and HMAmA2 were isolated from water extracts. Their monosaccharide composition was determined by gas chromatography. Glycosidic linkages were determined using GC-MS. NMR was also applied. The polymers were tested for effects on the human complement system in vitro at different doses. RESULTS: The monosaccharide composition showed that the two polysaccharides contained in different amounts the following monomers: arabinose, rhamnose, galactose, and galacturonic acid. Overall structural analysis showed the presence of a low ratio of 1,2-linked rhamnose compared to 1,4-linked galacturonic acid with arabinogalactans substituted on position 4 of rhamnose. NMR data showed the presence of galacturonans alternated by rhamnogalacturonans bearing arabinose and galactose units. α-Linkages were found for l-arabinose, l-rhamnose and d-galacturonic acid, while β-linkages were found for d-galactose. The two polysaccharides exhibited strong complement fixation activities, with HMAmA1 being the highest potent fraction. ICH(50) value of HMAmA1 was 5 µg/mL, compared to the control BPII being 15.9 µg/mL. DISCUSSION AND CONCLUSIONS: Polysaccharides form A. mexicana presented a complement fixation effect. The complement system is an important part of the immune defense, and compounds acting on the cascade are of interest. Therefore, these polymers may be useful as immunodulatory agents.