Cargando…
Sequence learning, prediction, and replay in networks of spiking neurons
Sequence learning, prediction and replay have been proposed to constitute the universal computations performed by the neocortex. The Hierarchical Temporal Memory (HTM) algorithm realizes these forms of computation. It learns sequences in an unsupervised and continuous manner using local learning rul...
Autores principales: | Bouhadjar, Younes, Wouters, Dirk J., Diesmann, Markus, Tetzlaff, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273101/ https://www.ncbi.nlm.nih.gov/pubmed/35727857 http://dx.doi.org/10.1371/journal.pcbi.1010233 |
Ejemplares similares
-
Coherent noise enables probabilistic sequence replay in spiking neuronal networks
por: Bouhadjar, Younes, et al.
Publicado: (2023) -
Learning and replaying spatiotemporal sequences: A replication study
por: Oberländer, Jette, et al.
Publicado: (2022) -
Learning predictive cognitive maps with spiking neurons during behavior and replays
por: Bono, Jacopo, et al.
Publicado: (2023) -
The Correlation Structure of Local Neuronal Networks Intrinsically Results from Recurrent Dynamics
por: Helias, Moritz, et al.
Publicado: (2014) -
A spiking-neuron model of memory encoding and replay in hippocampus
por: Trujillo, Oliver, et al.
Publicado: (2014)