Cargando…

Design of Drug Sales Forecasting Model Using Particle Swarm Optimization Neural Networks Model

The establishment of enterprise target inventory is directly related to the forecast of drug sales volume. Accurate sales forecasting can help businesses not only set accurate target inventory but also avoid inventory backlogs and shortages. In this paper, NN technology is used to forecast sales and...

Descripción completa

Detalles Bibliográficos
Autor principal: Yu, Chenggong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273344/
https://www.ncbi.nlm.nih.gov/pubmed/35832240
http://dx.doi.org/10.1155/2022/6836524
_version_ 1784745050884800512
author Yu, Chenggong
author_facet Yu, Chenggong
author_sort Yu, Chenggong
collection PubMed
description The establishment of enterprise target inventory is directly related to the forecast of drug sales volume. Accurate sales forecasting can help businesses not only set accurate target inventory but also avoid inventory backlogs and shortages. In this paper, NN technology is used to forecast sales and is optimized using the PSO algorithm, resulting in the creation of a drug sale forecast model. The model optimizes the weights and thresholds of NN using the improved PSO optimization algorithm and predicts the periodic components based on time correlation characteristics, effectively describing the trend growth and seasonal fluctuations of sales forecast data. Furthermore, the model in this paper has been creatively improved according to the needs of practical application, which has improved the shortcomings of traditional NN, such as long training time, slow convergence speed, and ease to fall into local minima, to improve performance and quality, and has received positive results in application. The experimental results show that this model has a prediction accuracy of 96.14 percent, which is 12.78 percent higher than the traditional BP model. The optimized model can be used to forecast drug sales in a practical and feasible way.
format Online
Article
Text
id pubmed-9273344
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-92733442022-07-12 Design of Drug Sales Forecasting Model Using Particle Swarm Optimization Neural Networks Model Yu, Chenggong Comput Intell Neurosci Research Article The establishment of enterprise target inventory is directly related to the forecast of drug sales volume. Accurate sales forecasting can help businesses not only set accurate target inventory but also avoid inventory backlogs and shortages. In this paper, NN technology is used to forecast sales and is optimized using the PSO algorithm, resulting in the creation of a drug sale forecast model. The model optimizes the weights and thresholds of NN using the improved PSO optimization algorithm and predicts the periodic components based on time correlation characteristics, effectively describing the trend growth and seasonal fluctuations of sales forecast data. Furthermore, the model in this paper has been creatively improved according to the needs of practical application, which has improved the shortcomings of traditional NN, such as long training time, slow convergence speed, and ease to fall into local minima, to improve performance and quality, and has received positive results in application. The experimental results show that this model has a prediction accuracy of 96.14 percent, which is 12.78 percent higher than the traditional BP model. The optimized model can be used to forecast drug sales in a practical and feasible way. Hindawi 2022-07-04 /pmc/articles/PMC9273344/ /pubmed/35832240 http://dx.doi.org/10.1155/2022/6836524 Text en Copyright © 2022 Chenggong Yu. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Yu, Chenggong
Design of Drug Sales Forecasting Model Using Particle Swarm Optimization Neural Networks Model
title Design of Drug Sales Forecasting Model Using Particle Swarm Optimization Neural Networks Model
title_full Design of Drug Sales Forecasting Model Using Particle Swarm Optimization Neural Networks Model
title_fullStr Design of Drug Sales Forecasting Model Using Particle Swarm Optimization Neural Networks Model
title_full_unstemmed Design of Drug Sales Forecasting Model Using Particle Swarm Optimization Neural Networks Model
title_short Design of Drug Sales Forecasting Model Using Particle Swarm Optimization Neural Networks Model
title_sort design of drug sales forecasting model using particle swarm optimization neural networks model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273344/
https://www.ncbi.nlm.nih.gov/pubmed/35832240
http://dx.doi.org/10.1155/2022/6836524
work_keys_str_mv AT yuchenggong designofdrugsalesforecastingmodelusingparticleswarmoptimizationneuralnetworksmodel