Cargando…

“Mutation blacklist” and “mutation whitelist” of SARS-CoV-2

Over the past two years, scientists throughout the world have completed more than 6 million SARS-CoV-2 genome sequences. Today, the number of SARS-CoV-2 genomes exceeds the total number of all other viral genomes. These genomes are a record of the evolution of SARS-CoV-2 in the human host, and provi...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Yamin, Wang, Min, Lin, Wenchao, Dong, Wei, Xu, Jianguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Published by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273572/
https://www.ncbi.nlm.nih.gov/pubmed/35845149
http://dx.doi.org/10.1016/j.jobb.2022.06.006
Descripción
Sumario:Over the past two years, scientists throughout the world have completed more than 6 million SARS-CoV-2 genome sequences. Today, the number of SARS-CoV-2 genomes exceeds the total number of all other viral genomes. These genomes are a record of the evolution of SARS-CoV-2 in the human host, and provide information on the emergence of mutations. In this study, analysis of these sequenced genomes identified 296,728 de novo mutations (DNMs), and found that six types of base substitutions reached saturation in the sequenced genome population. Based on this analysis, a “mutation blacklist” of SARS-CoV-2 was compiled. The loci on the “mutation blacklist” are highly conserved, and these mutations likely have detrimental effects on virus survival, replication, and transmission. This information is valuable for SARS-CoV-2 research on gene function, vaccine design, and drug development. Through association analysis of DNMs and viral transmission rates, we identified 185 DNMs that positively correlated with the SARS-CoV-2 transmission rate, and these DNMs where classified as the “mutation whitelist” of SARS-CoV-2. The mutations on the “mutation whitelist” are beneficial for SARS-CoV-2 transmission and could therefore be used to evaluate the transmissibility of new variants. The occurrence of mutations and the evolution of viruses are dynamic processes. To more effectively monitor the mutations and variants of SARS-CoV-2, we built a SARS-CoV-2 mutation and variant monitoring and pre-warning system (MVMPS), which can monitor the occurrence and development of mutations and variants of SARS-CoV-2, as well as provide pre-warning for the prevention and control of SARS-CoV-2 (https://www.omicx.cn/). Additionally, this system could be used in real-time to update the “mutation whitelist” and “mutation blacklist” of SARS-CoV-2.