Cargando…
Machine learning-based quantitative prediction of drug exposure in drug-drug interactions using drug label information
Many machine learning techniques provide a simple prediction for drug-drug interactions (DDIs). However, a systematically constructed database with pharmacokinetic (PK) DDI information does not exist, nor is there a machine learning model that numerically predicts PK fold change (FC) with it. Theref...
Autores principales: | Jang, Ha Young, Song, Jihyeon, Kim, Jae Hyun, Lee, Howard, Kim, In-Wha, Moon, Bongki, Oh, Jung Mi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273620/ https://www.ncbi.nlm.nih.gov/pubmed/35817846 http://dx.doi.org/10.1038/s41746-022-00639-0 |
Ejemplares similares
-
Drug repurposing using meta-analysis of gene expression in Alzheimer’s disease
por: Jang, Ha Young, et al.
Publicado: (2022) -
Screening of Drug Repositioning Candidates for Castration Resistant Prostate Cancer
por: Kim, In-Wha, et al.
Publicado: (2019) -
Adverse Events Related to Off-Label Drugs Using Spontaneous Adverse Event Reporting Systems
por: Han, Nayoung, et al.
Publicado: (2021) -
RETRACTED ARTICLE: Computational Drug Repositioning for Gastric Cancer using Reversal Gene Expression Profiles
por: Kim, In-Wha, et al.
Publicado: (2019) -
Retraction Note: Computational Drug Repositioning for Gastric Cancer using Reversal Gene Expression Profiles
por: Kim, In-Wha, et al.
Publicado: (2022)