Cargando…

Initial military training modulates serum fatty acid and amino acid metabolites

Initial military training (IMT) results in increased fat‐free mass (FFM) and decreased fat mass (FM). The underlying metabolic adaptations facilitating changes in body composition during IMT are unknown. The objective of this study was to assess changes in body composition and the serum metabolome d...

Descripción completa

Detalles Bibliográficos
Autores principales: Gwin, Jess A., Hatch‐McChesney, Adrienne, Pitts, Kenneth P., O'Brien, Rory P., Karis, Anthony J., Carrigan, Christopher T., McClung, James P., Karl, J. Philip, Margolis, Lee M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273871/
https://www.ncbi.nlm.nih.gov/pubmed/35818300
http://dx.doi.org/10.14814/phy2.15385
Descripción
Sumario:Initial military training (IMT) results in increased fat‐free mass (FFM) and decreased fat mass (FM). The underlying metabolic adaptations facilitating changes in body composition during IMT are unknown. The objective of this study was to assess changes in body composition and the serum metabolome during 22‐week US Army IMT. Fifty‐four volunteers (mean ± SD; 22 ± 3 year; 24.6 ± 3.7 kg/m(2)) completed this longitudinal study. Body composition measurements (InBody 770) and blood samples were collected under fasting, rested conditions PRE and POST IMT. Global metabolite profiling was performed to identify metabolites involved in energy, carbohydrate, lipid, and protein metabolism (Metabolon, Inc.). There was no change in body mass (POST‐PRE; 0.4 ± 5.1 kg, p = 0.59), while FM decreased (−1.7 ± 3.5 kg, p < 0.01), and FFM increased (2.1 ± 2.8 kg, p < 0.01) POST compared to PRE IMT. Of 677 identified metabolites, 340 differed at POST compared to PRE (p < 0.05, Q < 0.10). The majority of these metabolites were related to fatty acid (73%) and amino acid (26%) metabolism. Increases were detected in 41% of branched‐chain amino acid metabolites, 53% of histidine metabolites, and 35% of urea cycle metabolites. Decreases were detected in 93% of long‐chain fatty acid metabolites, while 58% of primary bile acid metabolites increased. Increases in amino acid metabolites suggest higher rates of protein turnover, while changes in fatty acid metabolites indicate increased fat oxidation, which likely contribute changes in body composition during IMT. Overall, changes in metabolomics profiles provide insight into metabolic adaptions underlying changes in body composition during IMT.