Cargando…

Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis

OBJECTIVE: To externally validate various prognostic models and scoring rules for predicting short term mortality in patients admitted to hospital for covid-19. DESIGN: Two stage individual participant data meta-analysis. SETTING: Secondary and tertiary care. PARTICIPANTS: 46 914 patients across 18...

Descripción completa

Detalles Bibliográficos
Autores principales: de Jong, Valentijn M T, Rousset, Rebecca Z, Antonio-Villa, Neftalí Eduardo, Buenen, Arnoldus G, Van Calster, Ben, Bello-Chavolla, Omar Yaxmehen, Brunskill, Nigel J, Curcin, Vasa, Damen, Johanna A A, Fermín-Martínez, Carlos A, Fernández-Chirino, Luisa, Ferrari, Davide, Free, Robert C, Gupta, Rishi K, Haldar, Pranabashis, Hedberg, Pontus, Korang, Steven Kwasi, Kurstjens, Steef, Kusters, Ron, Major, Rupert W, Maxwell, Lauren, Nair, Rajeshwari, Naucler, Pontus, Nguyen, Tri-Long, Noursadeghi, Mahdad, Rosa, Rossana, Soares, Felipe, Takada, Toshihiko, van Royen, Florien S, van Smeden, Maarten, Wynants, Laure, Modrák, Martin, Asselbergs, Folkert W, Linschoten, Marijke, Moons, Karel G M, Debray, Thomas P A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273913/
https://www.ncbi.nlm.nih.gov/pubmed/35820692
http://dx.doi.org/10.1136/bmj-2021-069881
_version_ 1784745189729894400
author de Jong, Valentijn M T
Rousset, Rebecca Z
Antonio-Villa, Neftalí Eduardo
Buenen, Arnoldus G
Van Calster, Ben
Bello-Chavolla, Omar Yaxmehen
Brunskill, Nigel J
Curcin, Vasa
Damen, Johanna A A
Fermín-Martínez, Carlos A
Fernández-Chirino, Luisa
Ferrari, Davide
Free, Robert C
Gupta, Rishi K
Haldar, Pranabashis
Hedberg, Pontus
Korang, Steven Kwasi
Kurstjens, Steef
Kusters, Ron
Major, Rupert W
Maxwell, Lauren
Nair, Rajeshwari
Naucler, Pontus
Nguyen, Tri-Long
Noursadeghi, Mahdad
Rosa, Rossana
Soares, Felipe
Takada, Toshihiko
van Royen, Florien S
van Smeden, Maarten
Wynants, Laure
Modrák, Martin
Asselbergs, Folkert W
Linschoten, Marijke
Moons, Karel G M
Debray, Thomas P A
author_facet de Jong, Valentijn M T
Rousset, Rebecca Z
Antonio-Villa, Neftalí Eduardo
Buenen, Arnoldus G
Van Calster, Ben
Bello-Chavolla, Omar Yaxmehen
Brunskill, Nigel J
Curcin, Vasa
Damen, Johanna A A
Fermín-Martínez, Carlos A
Fernández-Chirino, Luisa
Ferrari, Davide
Free, Robert C
Gupta, Rishi K
Haldar, Pranabashis
Hedberg, Pontus
Korang, Steven Kwasi
Kurstjens, Steef
Kusters, Ron
Major, Rupert W
Maxwell, Lauren
Nair, Rajeshwari
Naucler, Pontus
Nguyen, Tri-Long
Noursadeghi, Mahdad
Rosa, Rossana
Soares, Felipe
Takada, Toshihiko
van Royen, Florien S
van Smeden, Maarten
Wynants, Laure
Modrák, Martin
Asselbergs, Folkert W
Linschoten, Marijke
Moons, Karel G M
Debray, Thomas P A
author_sort de Jong, Valentijn M T
collection PubMed
description OBJECTIVE: To externally validate various prognostic models and scoring rules for predicting short term mortality in patients admitted to hospital for covid-19. DESIGN: Two stage individual participant data meta-analysis. SETTING: Secondary and tertiary care. PARTICIPANTS: 46 914 patients across 18 countries, admitted to a hospital with polymerase chain reaction confirmed covid-19 from November 2019 to April 2021. DATA SOURCES: Multiple (clustered) cohorts in Brazil, Belgium, China, Czech Republic, Egypt, France, Iran, Israel, Italy, Mexico, Netherlands, Portugal, Russia, Saudi Arabia, Spain, Sweden, United Kingdom, and United States previously identified by a living systematic review of covid-19 prediction models published in The BMJ, and through PROSPERO, reference checking, and expert knowledge. MODEL SELECTION AND ELIGIBILITY CRITERIA: Prognostic models identified by the living systematic review and through contacting experts. A priori models were excluded that had a high risk of bias in the participant domain of PROBAST (prediction model study risk of bias assessment tool) or for which the applicability was deemed poor. METHODS: Eight prognostic models with diverse predictors were identified and validated. A two stage individual participant data meta-analysis was performed of the estimated model concordance (C) statistic, calibration slope, calibration-in-the-large, and observed to expected ratio (O:E) across the included clusters. MAIN OUTCOME MEASURES: 30 day mortality or in-hospital mortality. RESULTS: Datasets included 27 clusters from 18 different countries and contained data on 46 914patients. The pooled estimates ranged from 0.67 to 0.80 (C statistic), 0.22 to 1.22 (calibration slope), and 0.18 to 2.59 (O:E ratio) and were prone to substantial between study heterogeneity. The 4C Mortality Score by Knight et al (pooled C statistic 0.80, 95% confidence interval 0.75 to 0.84, 95% prediction interval 0.72 to 0.86) and clinical model by Wang et al (0.77, 0.73 to 0.80, 0.63 to 0.87) had the highest discriminative ability. On average, 29% fewer deaths were observed than predicted by the 4C Mortality Score (pooled O:E 0.71, 95% confidence interval 0.45 to 1.11, 95% prediction interval 0.21 to 2.39), 35% fewer than predicted by the Wang clinical model (0.65, 0.52 to 0.82, 0.23 to 1.89), and 4% fewer than predicted by Xie et al’s model (0.96, 0.59 to 1.55, 0.21 to 4.28). CONCLUSION: The prognostic value of the included models varied greatly between the data sources. Although the Knight 4C Mortality Score and Wang clinical model appeared most promising, recalibration (intercept and slope updates) is needed before implementation in routine care.
format Online
Article
Text
id pubmed-9273913
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BMJ Publishing Group Ltd.
record_format MEDLINE/PubMed
spelling pubmed-92739132022-07-14 Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis de Jong, Valentijn M T Rousset, Rebecca Z Antonio-Villa, Neftalí Eduardo Buenen, Arnoldus G Van Calster, Ben Bello-Chavolla, Omar Yaxmehen Brunskill, Nigel J Curcin, Vasa Damen, Johanna A A Fermín-Martínez, Carlos A Fernández-Chirino, Luisa Ferrari, Davide Free, Robert C Gupta, Rishi K Haldar, Pranabashis Hedberg, Pontus Korang, Steven Kwasi Kurstjens, Steef Kusters, Ron Major, Rupert W Maxwell, Lauren Nair, Rajeshwari Naucler, Pontus Nguyen, Tri-Long Noursadeghi, Mahdad Rosa, Rossana Soares, Felipe Takada, Toshihiko van Royen, Florien S van Smeden, Maarten Wynants, Laure Modrák, Martin Asselbergs, Folkert W Linschoten, Marijke Moons, Karel G M Debray, Thomas P A BMJ Research OBJECTIVE: To externally validate various prognostic models and scoring rules for predicting short term mortality in patients admitted to hospital for covid-19. DESIGN: Two stage individual participant data meta-analysis. SETTING: Secondary and tertiary care. PARTICIPANTS: 46 914 patients across 18 countries, admitted to a hospital with polymerase chain reaction confirmed covid-19 from November 2019 to April 2021. DATA SOURCES: Multiple (clustered) cohorts in Brazil, Belgium, China, Czech Republic, Egypt, France, Iran, Israel, Italy, Mexico, Netherlands, Portugal, Russia, Saudi Arabia, Spain, Sweden, United Kingdom, and United States previously identified by a living systematic review of covid-19 prediction models published in The BMJ, and through PROSPERO, reference checking, and expert knowledge. MODEL SELECTION AND ELIGIBILITY CRITERIA: Prognostic models identified by the living systematic review and through contacting experts. A priori models were excluded that had a high risk of bias in the participant domain of PROBAST (prediction model study risk of bias assessment tool) or for which the applicability was deemed poor. METHODS: Eight prognostic models with diverse predictors were identified and validated. A two stage individual participant data meta-analysis was performed of the estimated model concordance (C) statistic, calibration slope, calibration-in-the-large, and observed to expected ratio (O:E) across the included clusters. MAIN OUTCOME MEASURES: 30 day mortality or in-hospital mortality. RESULTS: Datasets included 27 clusters from 18 different countries and contained data on 46 914patients. The pooled estimates ranged from 0.67 to 0.80 (C statistic), 0.22 to 1.22 (calibration slope), and 0.18 to 2.59 (O:E ratio) and were prone to substantial between study heterogeneity. The 4C Mortality Score by Knight et al (pooled C statistic 0.80, 95% confidence interval 0.75 to 0.84, 95% prediction interval 0.72 to 0.86) and clinical model by Wang et al (0.77, 0.73 to 0.80, 0.63 to 0.87) had the highest discriminative ability. On average, 29% fewer deaths were observed than predicted by the 4C Mortality Score (pooled O:E 0.71, 95% confidence interval 0.45 to 1.11, 95% prediction interval 0.21 to 2.39), 35% fewer than predicted by the Wang clinical model (0.65, 0.52 to 0.82, 0.23 to 1.89), and 4% fewer than predicted by Xie et al’s model (0.96, 0.59 to 1.55, 0.21 to 4.28). CONCLUSION: The prognostic value of the included models varied greatly between the data sources. Although the Knight 4C Mortality Score and Wang clinical model appeared most promising, recalibration (intercept and slope updates) is needed before implementation in routine care. BMJ Publishing Group Ltd. 2022-07-12 /pmc/articles/PMC9273913/ /pubmed/35820692 http://dx.doi.org/10.1136/bmj-2021-069881 Text en © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research
de Jong, Valentijn M T
Rousset, Rebecca Z
Antonio-Villa, Neftalí Eduardo
Buenen, Arnoldus G
Van Calster, Ben
Bello-Chavolla, Omar Yaxmehen
Brunskill, Nigel J
Curcin, Vasa
Damen, Johanna A A
Fermín-Martínez, Carlos A
Fernández-Chirino, Luisa
Ferrari, Davide
Free, Robert C
Gupta, Rishi K
Haldar, Pranabashis
Hedberg, Pontus
Korang, Steven Kwasi
Kurstjens, Steef
Kusters, Ron
Major, Rupert W
Maxwell, Lauren
Nair, Rajeshwari
Naucler, Pontus
Nguyen, Tri-Long
Noursadeghi, Mahdad
Rosa, Rossana
Soares, Felipe
Takada, Toshihiko
van Royen, Florien S
van Smeden, Maarten
Wynants, Laure
Modrák, Martin
Asselbergs, Folkert W
Linschoten, Marijke
Moons, Karel G M
Debray, Thomas P A
Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis
title Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis
title_full Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis
title_fullStr Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis
title_full_unstemmed Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis
title_short Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis
title_sort clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273913/
https://www.ncbi.nlm.nih.gov/pubmed/35820692
http://dx.doi.org/10.1136/bmj-2021-069881
work_keys_str_mv AT dejongvalentijnmt clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT roussetrebeccaz clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT antoniovillaneftalieduardo clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT buenenarnoldusg clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT vancalsterben clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT bellochavollaomaryaxmehen clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT brunskillnigelj clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT curcinvasa clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT damenjohannaaa clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT ferminmartinezcarlosa clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT fernandezchirinoluisa clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT ferraridavide clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT freerobertc clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT guptarishik clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT haldarpranabashis clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT hedbergpontus clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT korangstevenkwasi clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT kurstjenssteef clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT kustersron clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT majorrupertw clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT maxwelllauren clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT nairrajeshwari clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT nauclerpontus clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT nguyentrilong clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT noursadeghimahdad clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT rosarossana clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT soaresfelipe clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT takadatoshihiko clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT vanroyenfloriens clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT vansmedenmaarten clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT wynantslaure clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT modrakmartin clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT asselbergsfolkertw clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT linschotenmarijke clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT moonskarelgm clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis
AT debraythomaspa clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis