Cargando…
Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis
OBJECTIVE: To externally validate various prognostic models and scoring rules for predicting short term mortality in patients admitted to hospital for covid-19. DESIGN: Two stage individual participant data meta-analysis. SETTING: Secondary and tertiary care. PARTICIPANTS: 46 914 patients across 18...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273913/ https://www.ncbi.nlm.nih.gov/pubmed/35820692 http://dx.doi.org/10.1136/bmj-2021-069881 |
_version_ | 1784745189729894400 |
---|---|
author | de Jong, Valentijn M T Rousset, Rebecca Z Antonio-Villa, Neftalí Eduardo Buenen, Arnoldus G Van Calster, Ben Bello-Chavolla, Omar Yaxmehen Brunskill, Nigel J Curcin, Vasa Damen, Johanna A A Fermín-Martínez, Carlos A Fernández-Chirino, Luisa Ferrari, Davide Free, Robert C Gupta, Rishi K Haldar, Pranabashis Hedberg, Pontus Korang, Steven Kwasi Kurstjens, Steef Kusters, Ron Major, Rupert W Maxwell, Lauren Nair, Rajeshwari Naucler, Pontus Nguyen, Tri-Long Noursadeghi, Mahdad Rosa, Rossana Soares, Felipe Takada, Toshihiko van Royen, Florien S van Smeden, Maarten Wynants, Laure Modrák, Martin Asselbergs, Folkert W Linschoten, Marijke Moons, Karel G M Debray, Thomas P A |
author_facet | de Jong, Valentijn M T Rousset, Rebecca Z Antonio-Villa, Neftalí Eduardo Buenen, Arnoldus G Van Calster, Ben Bello-Chavolla, Omar Yaxmehen Brunskill, Nigel J Curcin, Vasa Damen, Johanna A A Fermín-Martínez, Carlos A Fernández-Chirino, Luisa Ferrari, Davide Free, Robert C Gupta, Rishi K Haldar, Pranabashis Hedberg, Pontus Korang, Steven Kwasi Kurstjens, Steef Kusters, Ron Major, Rupert W Maxwell, Lauren Nair, Rajeshwari Naucler, Pontus Nguyen, Tri-Long Noursadeghi, Mahdad Rosa, Rossana Soares, Felipe Takada, Toshihiko van Royen, Florien S van Smeden, Maarten Wynants, Laure Modrák, Martin Asselbergs, Folkert W Linschoten, Marijke Moons, Karel G M Debray, Thomas P A |
author_sort | de Jong, Valentijn M T |
collection | PubMed |
description | OBJECTIVE: To externally validate various prognostic models and scoring rules for predicting short term mortality in patients admitted to hospital for covid-19. DESIGN: Two stage individual participant data meta-analysis. SETTING: Secondary and tertiary care. PARTICIPANTS: 46 914 patients across 18 countries, admitted to a hospital with polymerase chain reaction confirmed covid-19 from November 2019 to April 2021. DATA SOURCES: Multiple (clustered) cohorts in Brazil, Belgium, China, Czech Republic, Egypt, France, Iran, Israel, Italy, Mexico, Netherlands, Portugal, Russia, Saudi Arabia, Spain, Sweden, United Kingdom, and United States previously identified by a living systematic review of covid-19 prediction models published in The BMJ, and through PROSPERO, reference checking, and expert knowledge. MODEL SELECTION AND ELIGIBILITY CRITERIA: Prognostic models identified by the living systematic review and through contacting experts. A priori models were excluded that had a high risk of bias in the participant domain of PROBAST (prediction model study risk of bias assessment tool) or for which the applicability was deemed poor. METHODS: Eight prognostic models with diverse predictors were identified and validated. A two stage individual participant data meta-analysis was performed of the estimated model concordance (C) statistic, calibration slope, calibration-in-the-large, and observed to expected ratio (O:E) across the included clusters. MAIN OUTCOME MEASURES: 30 day mortality or in-hospital mortality. RESULTS: Datasets included 27 clusters from 18 different countries and contained data on 46 914patients. The pooled estimates ranged from 0.67 to 0.80 (C statistic), 0.22 to 1.22 (calibration slope), and 0.18 to 2.59 (O:E ratio) and were prone to substantial between study heterogeneity. The 4C Mortality Score by Knight et al (pooled C statistic 0.80, 95% confidence interval 0.75 to 0.84, 95% prediction interval 0.72 to 0.86) and clinical model by Wang et al (0.77, 0.73 to 0.80, 0.63 to 0.87) had the highest discriminative ability. On average, 29% fewer deaths were observed than predicted by the 4C Mortality Score (pooled O:E 0.71, 95% confidence interval 0.45 to 1.11, 95% prediction interval 0.21 to 2.39), 35% fewer than predicted by the Wang clinical model (0.65, 0.52 to 0.82, 0.23 to 1.89), and 4% fewer than predicted by Xie et al’s model (0.96, 0.59 to 1.55, 0.21 to 4.28). CONCLUSION: The prognostic value of the included models varied greatly between the data sources. Although the Knight 4C Mortality Score and Wang clinical model appeared most promising, recalibration (intercept and slope updates) is needed before implementation in routine care. |
format | Online Article Text |
id | pubmed-9273913 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BMJ Publishing Group Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92739132022-07-14 Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis de Jong, Valentijn M T Rousset, Rebecca Z Antonio-Villa, Neftalí Eduardo Buenen, Arnoldus G Van Calster, Ben Bello-Chavolla, Omar Yaxmehen Brunskill, Nigel J Curcin, Vasa Damen, Johanna A A Fermín-Martínez, Carlos A Fernández-Chirino, Luisa Ferrari, Davide Free, Robert C Gupta, Rishi K Haldar, Pranabashis Hedberg, Pontus Korang, Steven Kwasi Kurstjens, Steef Kusters, Ron Major, Rupert W Maxwell, Lauren Nair, Rajeshwari Naucler, Pontus Nguyen, Tri-Long Noursadeghi, Mahdad Rosa, Rossana Soares, Felipe Takada, Toshihiko van Royen, Florien S van Smeden, Maarten Wynants, Laure Modrák, Martin Asselbergs, Folkert W Linschoten, Marijke Moons, Karel G M Debray, Thomas P A BMJ Research OBJECTIVE: To externally validate various prognostic models and scoring rules for predicting short term mortality in patients admitted to hospital for covid-19. DESIGN: Two stage individual participant data meta-analysis. SETTING: Secondary and tertiary care. PARTICIPANTS: 46 914 patients across 18 countries, admitted to a hospital with polymerase chain reaction confirmed covid-19 from November 2019 to April 2021. DATA SOURCES: Multiple (clustered) cohorts in Brazil, Belgium, China, Czech Republic, Egypt, France, Iran, Israel, Italy, Mexico, Netherlands, Portugal, Russia, Saudi Arabia, Spain, Sweden, United Kingdom, and United States previously identified by a living systematic review of covid-19 prediction models published in The BMJ, and through PROSPERO, reference checking, and expert knowledge. MODEL SELECTION AND ELIGIBILITY CRITERIA: Prognostic models identified by the living systematic review and through contacting experts. A priori models were excluded that had a high risk of bias in the participant domain of PROBAST (prediction model study risk of bias assessment tool) or for which the applicability was deemed poor. METHODS: Eight prognostic models with diverse predictors were identified and validated. A two stage individual participant data meta-analysis was performed of the estimated model concordance (C) statistic, calibration slope, calibration-in-the-large, and observed to expected ratio (O:E) across the included clusters. MAIN OUTCOME MEASURES: 30 day mortality or in-hospital mortality. RESULTS: Datasets included 27 clusters from 18 different countries and contained data on 46 914patients. The pooled estimates ranged from 0.67 to 0.80 (C statistic), 0.22 to 1.22 (calibration slope), and 0.18 to 2.59 (O:E ratio) and were prone to substantial between study heterogeneity. The 4C Mortality Score by Knight et al (pooled C statistic 0.80, 95% confidence interval 0.75 to 0.84, 95% prediction interval 0.72 to 0.86) and clinical model by Wang et al (0.77, 0.73 to 0.80, 0.63 to 0.87) had the highest discriminative ability. On average, 29% fewer deaths were observed than predicted by the 4C Mortality Score (pooled O:E 0.71, 95% confidence interval 0.45 to 1.11, 95% prediction interval 0.21 to 2.39), 35% fewer than predicted by the Wang clinical model (0.65, 0.52 to 0.82, 0.23 to 1.89), and 4% fewer than predicted by Xie et al’s model (0.96, 0.59 to 1.55, 0.21 to 4.28). CONCLUSION: The prognostic value of the included models varied greatly between the data sources. Although the Knight 4C Mortality Score and Wang clinical model appeared most promising, recalibration (intercept and slope updates) is needed before implementation in routine care. BMJ Publishing Group Ltd. 2022-07-12 /pmc/articles/PMC9273913/ /pubmed/35820692 http://dx.doi.org/10.1136/bmj-2021-069881 Text en © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research de Jong, Valentijn M T Rousset, Rebecca Z Antonio-Villa, Neftalí Eduardo Buenen, Arnoldus G Van Calster, Ben Bello-Chavolla, Omar Yaxmehen Brunskill, Nigel J Curcin, Vasa Damen, Johanna A A Fermín-Martínez, Carlos A Fernández-Chirino, Luisa Ferrari, Davide Free, Robert C Gupta, Rishi K Haldar, Pranabashis Hedberg, Pontus Korang, Steven Kwasi Kurstjens, Steef Kusters, Ron Major, Rupert W Maxwell, Lauren Nair, Rajeshwari Naucler, Pontus Nguyen, Tri-Long Noursadeghi, Mahdad Rosa, Rossana Soares, Felipe Takada, Toshihiko van Royen, Florien S van Smeden, Maarten Wynants, Laure Modrák, Martin Asselbergs, Folkert W Linschoten, Marijke Moons, Karel G M Debray, Thomas P A Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis |
title | Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis |
title_full | Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis |
title_fullStr | Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis |
title_full_unstemmed | Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis |
title_short | Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis |
title_sort | clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273913/ https://www.ncbi.nlm.nih.gov/pubmed/35820692 http://dx.doi.org/10.1136/bmj-2021-069881 |
work_keys_str_mv | AT dejongvalentijnmt clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT roussetrebeccaz clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT antoniovillaneftalieduardo clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT buenenarnoldusg clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT vancalsterben clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT bellochavollaomaryaxmehen clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT brunskillnigelj clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT curcinvasa clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT damenjohannaaa clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT ferminmartinezcarlosa clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT fernandezchirinoluisa clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT ferraridavide clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT freerobertc clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT guptarishik clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT haldarpranabashis clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT hedbergpontus clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT korangstevenkwasi clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT kurstjenssteef clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT kustersron clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT majorrupertw clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT maxwelllauren clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT nairrajeshwari clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT nauclerpontus clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT nguyentrilong clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT noursadeghimahdad clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT rosarossana clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT soaresfelipe clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT takadatoshihiko clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT vanroyenfloriens clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT vansmedenmaarten clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT wynantslaure clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT modrakmartin clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT asselbergsfolkertw clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT linschotenmarijke clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT moonskarelgm clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis AT debraythomaspa clinicalpredictionmodelsformortalityinpatientswithcovid19externalvalidationandindividualparticipantdatametaanalysis |