Cargando…

Leveraging metabolic modeling to identify functional metabolic alterations associated with COVID-19 disease severity

OBJECTIVE: Since the COVID-19 pandemic began in early 2020, SARS-CoV2 has claimed more than six million lives world-wide, with over 510 million cases to date. To reduce healthcare burden, we must investigate how to prevent non-acute disease from progressing to severe infection requiring hospitalizat...

Descripción completa

Detalles Bibliográficos
Autores principales: Dillard, L. R., Wase, N., Ramakrishnan, G., Park, J. J., Sherman, N. E., Carpenter, R., Young, M., Donlan, A. N., Petri, W., Papin, J. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273921/
https://www.ncbi.nlm.nih.gov/pubmed/35819731
http://dx.doi.org/10.1007/s11306-022-01904-9
Descripción
Sumario:OBJECTIVE: Since the COVID-19 pandemic began in early 2020, SARS-CoV2 has claimed more than six million lives world-wide, with over 510 million cases to date. To reduce healthcare burden, we must investigate how to prevent non-acute disease from progressing to severe infection requiring hospitalization. METHODS: To achieve this goal, we investigated metabolic signatures of both non-acute (out-patient) and severe (requiring hospitalization) COVID-19 samples by profiling the associated plasma metabolomes of 84 COVID-19 positive University of Virginia hospital patients. We utilized supervised and unsupervised machine learning and metabolic modeling approaches to identify key metabolic drivers that are predictive of COVID-19 disease severity. Using metabolic pathway enrichment analysis, we explored potential metabolic mechanisms that link these markers to disease progression. RESULTS: Enriched metabolites associated with tryptophan in non-acute COVID-19 samples suggest mitigated innate immune system inflammatory response and immunopathology related lung damage prevention. Increased prevalence of histidine- and ketone-related metabolism in severe COVID-19 samples offers potential mechanistic insight to musculoskeletal degeneration-induced muscular weakness and host metabolism that has been hijacked by SARS-CoV2 infection to increase viral replication and invasion. CONCLUSIONS: Our findings highlight the metabolic transition from an innate immune response coupled with inflammatory pathway inhibition in non-acute infection to rampant inflammation and associated metabolic systemic dysfunction in severe COVID-19.