Cargando…
Prediction of Soluble Solids and Lycopene Content of Processing Tomato Cultivars by Vis-NIR Spectroscopy
Tomato-based products are significant components of vegetable consumption. The processing tomato industry is unquestionably in need of a rapid definition method for measuring soluble solids content (SSC) and lycopene content. The objective was to find the best chemometric method for the estimation o...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9274195/ https://www.ncbi.nlm.nih.gov/pubmed/35836590 http://dx.doi.org/10.3389/fnut.2022.845317 |
_version_ | 1784745253957271552 |
---|---|
author | Égei, Márton Takács, Sándor Palotás, Gábor Palotás, Gabriella Szuvandzsiev, Péter Daood, Hussein Gehad Helyes, Lajos Pék, Zoltán |
author_facet | Égei, Márton Takács, Sándor Palotás, Gábor Palotás, Gabriella Szuvandzsiev, Péter Daood, Hussein Gehad Helyes, Lajos Pék, Zoltán |
author_sort | Égei, Márton |
collection | PubMed |
description | Tomato-based products are significant components of vegetable consumption. The processing tomato industry is unquestionably in need of a rapid definition method for measuring soluble solids content (SSC) and lycopene content. The objective was to find the best chemometric method for the estimation of SSC and lycopene content from visible and near-infrared (Vis-NIR) absorbance and reflectance data so that they could be determined without the use of chemicals in the process. A total of 326 Vis-NIR absorbance and reflectance spectra and reference measurements were available to calibrate and validate prediction models. The obtained spectra can be manipulated using different preprocessing methods and multivariate data analysis techniques to develop prediction models for these two main quality attributes of tomato fruits. Eight different method combinations were compared in homogenized and intact fruit samples. For SSC prediction, the results showed that the best root mean squared error of cross-validation (RMSECV) originated from raw absorbance (0.58) data and with multiplicative scatter correction (MSC) (0.59) of intact fruit in Vis-NIR, and first derivatives of reflectance (R(2) = 0.41) for homogenate in the short-wave infrared (SWIR) region. The best predictive ability for lycopene content of homogenate in the SWIR range (R(2) = 0.47; RMSECV = 17.95 mg kg(–1)) was slightly lower than that of Vis-NIR (R(2) = 0.68; 15.07 mg kg(–1)). This study reports the suitability of two Vis-NIR spectrometers, absorbance/reflectance spectra, preprocessing methods, and partial least square (PLS) regression to predict SSC and lycopene content of intact tomato fruit and its homogenate. |
format | Online Article Text |
id | pubmed-9274195 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92741952022-07-13 Prediction of Soluble Solids and Lycopene Content of Processing Tomato Cultivars by Vis-NIR Spectroscopy Égei, Márton Takács, Sándor Palotás, Gábor Palotás, Gabriella Szuvandzsiev, Péter Daood, Hussein Gehad Helyes, Lajos Pék, Zoltán Front Nutr Nutrition Tomato-based products are significant components of vegetable consumption. The processing tomato industry is unquestionably in need of a rapid definition method for measuring soluble solids content (SSC) and lycopene content. The objective was to find the best chemometric method for the estimation of SSC and lycopene content from visible and near-infrared (Vis-NIR) absorbance and reflectance data so that they could be determined without the use of chemicals in the process. A total of 326 Vis-NIR absorbance and reflectance spectra and reference measurements were available to calibrate and validate prediction models. The obtained spectra can be manipulated using different preprocessing methods and multivariate data analysis techniques to develop prediction models for these two main quality attributes of tomato fruits. Eight different method combinations were compared in homogenized and intact fruit samples. For SSC prediction, the results showed that the best root mean squared error of cross-validation (RMSECV) originated from raw absorbance (0.58) data and with multiplicative scatter correction (MSC) (0.59) of intact fruit in Vis-NIR, and first derivatives of reflectance (R(2) = 0.41) for homogenate in the short-wave infrared (SWIR) region. The best predictive ability for lycopene content of homogenate in the SWIR range (R(2) = 0.47; RMSECV = 17.95 mg kg(–1)) was slightly lower than that of Vis-NIR (R(2) = 0.68; 15.07 mg kg(–1)). This study reports the suitability of two Vis-NIR spectrometers, absorbance/reflectance spectra, preprocessing methods, and partial least square (PLS) regression to predict SSC and lycopene content of intact tomato fruit and its homogenate. Frontiers Media S.A. 2022-06-28 /pmc/articles/PMC9274195/ /pubmed/35836590 http://dx.doi.org/10.3389/fnut.2022.845317 Text en Copyright © 2022 Égei, Takács, Palotás, Palotás, Szuvandzsiev, Daood, Helyes and Pék. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Nutrition Égei, Márton Takács, Sándor Palotás, Gábor Palotás, Gabriella Szuvandzsiev, Péter Daood, Hussein Gehad Helyes, Lajos Pék, Zoltán Prediction of Soluble Solids and Lycopene Content of Processing Tomato Cultivars by Vis-NIR Spectroscopy |
title | Prediction of Soluble Solids and Lycopene Content of Processing Tomato Cultivars by Vis-NIR Spectroscopy |
title_full | Prediction of Soluble Solids and Lycopene Content of Processing Tomato Cultivars by Vis-NIR Spectroscopy |
title_fullStr | Prediction of Soluble Solids and Lycopene Content of Processing Tomato Cultivars by Vis-NIR Spectroscopy |
title_full_unstemmed | Prediction of Soluble Solids and Lycopene Content of Processing Tomato Cultivars by Vis-NIR Spectroscopy |
title_short | Prediction of Soluble Solids and Lycopene Content of Processing Tomato Cultivars by Vis-NIR Spectroscopy |
title_sort | prediction of soluble solids and lycopene content of processing tomato cultivars by vis-nir spectroscopy |
topic | Nutrition |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9274195/ https://www.ncbi.nlm.nih.gov/pubmed/35836590 http://dx.doi.org/10.3389/fnut.2022.845317 |
work_keys_str_mv | AT egeimarton predictionofsolublesolidsandlycopenecontentofprocessingtomatocultivarsbyvisnirspectroscopy AT takacssandor predictionofsolublesolidsandlycopenecontentofprocessingtomatocultivarsbyvisnirspectroscopy AT palotasgabor predictionofsolublesolidsandlycopenecontentofprocessingtomatocultivarsbyvisnirspectroscopy AT palotasgabriella predictionofsolublesolidsandlycopenecontentofprocessingtomatocultivarsbyvisnirspectroscopy AT szuvandzsievpeter predictionofsolublesolidsandlycopenecontentofprocessingtomatocultivarsbyvisnirspectroscopy AT daoodhusseingehad predictionofsolublesolidsandlycopenecontentofprocessingtomatocultivarsbyvisnirspectroscopy AT helyeslajos predictionofsolublesolidsandlycopenecontentofprocessingtomatocultivarsbyvisnirspectroscopy AT pekzoltan predictionofsolublesolidsandlycopenecontentofprocessingtomatocultivarsbyvisnirspectroscopy |