Cargando…
Surgical management of os odontoideum: An Algerian center experience
BACKGROUND: Os odontoideum (OO) is a craniovertebral junction malformation of unknown origin. In most times, this lesion is highly unstable demanding surgical management. We present our series of OO surgical management and we discuss clinical, radiological, and management aspects of this pathology v...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9274682/ https://www.ncbi.nlm.nih.gov/pubmed/35837425 http://dx.doi.org/10.4103/jcvjs.jcvjs_7_22 |
Sumario: | BACKGROUND: Os odontoideum (OO) is a craniovertebral junction malformation of unknown origin. In most times, this lesion is highly unstable demanding surgical management. We present our series of OO surgical management and we discuss clinical, radiological, and management aspects of this pathology via our experience and literature opinions. METHODS: This is a retrospective study of patients operated on at our department between May 2014 and May 2021 for OO. All patients were explored with plane X-rays and computed tomography (CT). In some cases, magnetic resonance imaging (MRI) was necessary. Posterior C1–C2 or C1-C3 fixation with polyaxial screws and rod fixation was used. In postoperative, the patient is asked to put Philadelphia collar for 3 months. Hospitalization periods vary between 3 and 7 days. After discharge, all our patients are followed up regularly in consultation. Control radiographs of the occipito cervical region were performed. After 3 months postoperatively, the CT scan is performed on all our patients to assess the quality of fusion. Patient's follow-up ranges from 4 months to 6 years. RESULTS: Fifteen patients were included in this study; nine males (60%) and six females (40%); with mean age of 32.5 years old. Ten patients (67%) presented motor weakness, three patients (20%) with neck pain, one patient (6.5%) with torticollis, and one patient (6.5%) presented vertigo. No notable cervical trauma was present in six patients (40%) and in nine patients (60%), a remote history of traumatism was noted. All cases of our series presented mobile OO. Normal thickness of the C2 pedicle was noted in nine patients (60%). In two patients (13%), there was hypoplasia of one pedicle and in four patients (27%) both pedicles. MRI showed direct signs of spinal cord aggression: simple compression, myelomalacia, strangulation, or hypotrophy. C1 lateral mass screw fixation was performed in all patients; and according to C2 morphology: nine patients underwent C1-C2 pedicular fixation, in one patient, bilateral crossing C2 laminar screws technique, in three patients, we skipped C2 to perform a C1-C3 articular fixation, and in two patients, C1-C2-C3 fixations were performed. All patients improved clinically. In one patient, we noted an infection resulting in bad wound healing this infection was successfully treated with no complications. In the patient with bilateral crossing C2 laminar screws technique, CT control objectified 4 mm exceeding of one screw; the patient was reoperated and the screw was slightly pulled back. No other complications were noted. CONCLUSION: Congenital origin of OO is always evoked. C1-C2 fixation according to Goel and Harms technique with grafting proved its safety, providing high fixation quality with the acceptable biodynamic outcome. Once treated, the prognostic of OO is in general good, and improvement is observed in most patients with few complications. |
---|