Cargando…
Analyzing Transfer Learning of Vision Transformers for Interpreting Chest Radiography
Limited availability of medical imaging datasets is a vital limitation when using “data hungry” deep learning to gain performance improvements. Dealing with the issue, transfer learning has become a de facto standard, where a pre-trained convolution neural network (CNN), typically on natural images...
Autores principales: | Usman, Mohammad, Zia, Tehseen, Tariq, Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9274969/ https://www.ncbi.nlm.nih.gov/pubmed/35819537 http://dx.doi.org/10.1007/s10278-022-00666-z |
Ejemplares similares
-
Vision transformer and explainable transfer learning models for auto detection of kidney cyst, stone and tumor from CT-radiography
por: Islam, Md Nazmul, et al.
Publicado: (2022) -
An Unusual and Fatal Cause of Miliary Nodules on Chest Radiography
por: Cheema, Anmol, et al.
Publicado: (2018) -
Dark-Field Chest Radiography Outperforms Conventional Chest Radiography for the Diagnosis and Staging of Pulmonary Emphysema
por: Urban, Theresa, et al.
Publicado: (2023) -
Vision-Transformer-Based Transfer Learning for Mammogram Classification
por: Ayana, Gelan, et al.
Publicado: (2023) -
Computer-aided interpretation of chest radiography reveals the spectrum of tuberculosis in rural South Africa
por: Fehr, Jana, et al.
Publicado: (2021)