Cargando…

Gingival shape analysis using surface curvature estimation of the intraoral scans

BACKGROUND: Despite many advances in dentistry, no objective and quantitative method is available to evaluate gingival shape. The surface curvature of the optical scans represents an unexploited possibility. The present study aimed to test surface curvature estimation of intraoral scans for objectiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuralt, Marko, Cmok Kučič, Alja, Gašperšič, Rok, Grošelj, Jan, Knez, Marjeta, Fidler, Aleš
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275066/
https://www.ncbi.nlm.nih.gov/pubmed/35820843
http://dx.doi.org/10.1186/s12903-022-02322-y
Descripción
Sumario:BACKGROUND: Despite many advances in dentistry, no objective and quantitative method is available to evaluate gingival shape. The surface curvature of the optical scans represents an unexploited possibility. The present study aimed to test surface curvature estimation of intraoral scans for objective evaluation of gingival shape. METHODS: The method consists of four main steps, i.e., optical scanning, surface curvature estimation, region of interest (ROI) definition, and gingival shape analysis. Six different curvature measures and three different diameters were tested for surface curvature estimation on central (n = 78) and interdental ROI (n = 88) of patients with advanced periodontitis to quantify gingiva with a novel gingival shape parameter (GS). The reproducibility was evaluated by repeating the method on two consecutive intraoral scans obtained with a scan-rescan process of the same patient at the same time point (n = 8). RESULTS: Minimum and mean curvature measures computed at 2 mm diameter seem optimal GS to quantify shape at central and interdental ROI, respectively. The mean (and standard deviation) of the GS was 0.33 ± 0.07 and 0.19 ± 0.09 for central ROI using minimum, and interdental ROI using mean curvature measure, respectively, computed at a diameter of 2 mm. The method’s reproducibility evaluated on scan-rescan models for the above-mentioned ROI and curvature measures was 0.02 and 0.01, respectively. CONCLUSIONS: Surface curvature estimation of the intraoral optical scans presents a precise and highly reproducible method for the objective gingival shape quantification enabling the detection of subtle changes. A careful selection of parameters for surface curvature estimation and curvature measures is required. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12903-022-02322-y.