Cargando…

MTAGCN: predicting miRNA-target associations in Camellia sinensis var. assamica through graph convolution neural network

BACKGROUND: MircoRNAs (miRNAs) play a central role in diverse biological processes of Camellia sinensis var.assamica (CSA) through their associations with target mRNAs, including CSA growth, development and stress response. However, although the experiment methods of CSA miRNA-target identifications...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Haisong, Xiang, Ying, Wang, Xiaosong, Xue, Wei, Yue, Zhenyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275082/
https://www.ncbi.nlm.nih.gov/pubmed/35820798
http://dx.doi.org/10.1186/s12859-022-04819-3
Descripción
Sumario:BACKGROUND: MircoRNAs (miRNAs) play a central role in diverse biological processes of Camellia sinensis var.assamica (CSA) through their associations with target mRNAs, including CSA growth, development and stress response. However, although the experiment methods of CSA miRNA-target identifications are costly and time-consuming, few computational methods have been developed to tackle the CSA miRNA-target association prediction problem. RESULTS: In this paper, we constructed a heterogeneous network for CSA miRNA and targets by integrating rich biological information, including a miRNA similarity network, a target similarity network, and a miRNA-target association network. We then proposed a deep learning framework of graph convolution networks with layer attention mechanism, named MTAGCN. In particular, MTAGCN uses the attention mechanism to combine embeddings of multiple graph convolution layers, employing the integrated embedding to score the unobserved CSA miRNA-target associations. DISCUSSION: Comprehensive experiment results on two tasks (balanced task and unbalanced task) demonstrated that our proposed model achieved better performance than the classic machine learning and existing graph convolution network-based methods. The analysis of these results could offer valuable information for understanding complex CSA miRNA-target association mechanisms and would make a contribution to precision plant breeding. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-022-04819-3.