Cargando…

Infection Dynamics of Cotransmitted Reproductive Symbionts Are Mediated by Sex, Tissue, and Development

One of the most prevalent intracellular infections on earth is with Wolbachia, a bacterium in the Rickettsiales that infects a range of insects, crustaceans, chelicerates, and nematodes. Wolbachia is maternally transmitted to offspring and has profound effects on the reproduction and physiology of i...

Descripción completa

Detalles Bibliográficos
Autores principales: Jones, Megan W., Fricke, Laura C., Thorpe, Cody J., Vander Esch, Lauren O., Lindsey, Amelia R. I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275221/
https://www.ncbi.nlm.nih.gov/pubmed/35730939
http://dx.doi.org/10.1128/aem.00529-22
_version_ 1784745446305955840
author Jones, Megan W.
Fricke, Laura C.
Thorpe, Cody J.
Vander Esch, Lauren O.
Lindsey, Amelia R. I.
author_facet Jones, Megan W.
Fricke, Laura C.
Thorpe, Cody J.
Vander Esch, Lauren O.
Lindsey, Amelia R. I.
author_sort Jones, Megan W.
collection PubMed
description One of the most prevalent intracellular infections on earth is with Wolbachia, a bacterium in the Rickettsiales that infects a range of insects, crustaceans, chelicerates, and nematodes. Wolbachia is maternally transmitted to offspring and has profound effects on the reproduction and physiology of its hosts, which can result in reproductive isolation, altered vectorial capacity, mitochondrial sweeps, and even host speciation. Some populations stably harbor multiple Wolbachia strains, which can further contribute to reproductive isolation and altered host physiology. However, almost nothing is known about the requirements for multiple intracellular microbes to be stably maintained across generations while they likely compete for space and resources. Here, we use a coinfection of two Wolbachia strains (“wHa” and “wNo”) in Drosophila simulans to define the infection and transmission dynamics of an evolutionarily stable double infection. We find that a combination of sex, tissue, and host development contributes to the infection dynamics of the two microbes and that these infections exhibit a degree of niche partitioning across host tissues. wHa is present at a significantly higher titer than wNo in most tissues and developmental stages, but wNo is uniquely dominant in ovaries. Unexpectedly, the ratio of wHa to wNo in embryos does not reflect those observed in the ovaries, indicative of strain-specific transmission dynamics. Understanding how Wolbachia strains interact to establish and maintain stable infections has important implications for the development and effective implementation of Wolbachia-based vector biocontrol strategies, as well as more broadly defining how cooperation and conflict shape intracellular communities. IMPORTANCE Wolbachia is a maternally transmitted intracellular bacterium that manipulates the reproduction and physiology of arthropods, resulting in drastic effects on the fitness, evolution, and even speciation of its hosts. Some hosts naturally harbor multiple strains of Wolbachia that are stably transmitted across generations, but almost nothing is known about the factors that limit or promote these coinfections, which can have profound effects on the host’s biology and evolution and are under consideration as an insect-management tool. Here, we define the infection dynamics of a known stably transmitted double infection in Drosophila simulans with an eye toward understanding the patterns of infection that might facilitate compatibility between the two microbes. We find that a combination of sex, tissue, and development all contributes to infection dynamics of the coinfection.
format Online
Article
Text
id pubmed-9275221
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-92752212022-07-13 Infection Dynamics of Cotransmitted Reproductive Symbionts Are Mediated by Sex, Tissue, and Development Jones, Megan W. Fricke, Laura C. Thorpe, Cody J. Vander Esch, Lauren O. Lindsey, Amelia R. I. Appl Environ Microbiol Invertebrate Microbiology One of the most prevalent intracellular infections on earth is with Wolbachia, a bacterium in the Rickettsiales that infects a range of insects, crustaceans, chelicerates, and nematodes. Wolbachia is maternally transmitted to offspring and has profound effects on the reproduction and physiology of its hosts, which can result in reproductive isolation, altered vectorial capacity, mitochondrial sweeps, and even host speciation. Some populations stably harbor multiple Wolbachia strains, which can further contribute to reproductive isolation and altered host physiology. However, almost nothing is known about the requirements for multiple intracellular microbes to be stably maintained across generations while they likely compete for space and resources. Here, we use a coinfection of two Wolbachia strains (“wHa” and “wNo”) in Drosophila simulans to define the infection and transmission dynamics of an evolutionarily stable double infection. We find that a combination of sex, tissue, and host development contributes to the infection dynamics of the two microbes and that these infections exhibit a degree of niche partitioning across host tissues. wHa is present at a significantly higher titer than wNo in most tissues and developmental stages, but wNo is uniquely dominant in ovaries. Unexpectedly, the ratio of wHa to wNo in embryos does not reflect those observed in the ovaries, indicative of strain-specific transmission dynamics. Understanding how Wolbachia strains interact to establish and maintain stable infections has important implications for the development and effective implementation of Wolbachia-based vector biocontrol strategies, as well as more broadly defining how cooperation and conflict shape intracellular communities. IMPORTANCE Wolbachia is a maternally transmitted intracellular bacterium that manipulates the reproduction and physiology of arthropods, resulting in drastic effects on the fitness, evolution, and even speciation of its hosts. Some hosts naturally harbor multiple strains of Wolbachia that are stably transmitted across generations, but almost nothing is known about the factors that limit or promote these coinfections, which can have profound effects on the host’s biology and evolution and are under consideration as an insect-management tool. Here, we define the infection dynamics of a known stably transmitted double infection in Drosophila simulans with an eye toward understanding the patterns of infection that might facilitate compatibility between the two microbes. We find that a combination of sex, tissue, and development all contributes to infection dynamics of the coinfection. American Society for Microbiology 2022-06-22 /pmc/articles/PMC9275221/ /pubmed/35730939 http://dx.doi.org/10.1128/aem.00529-22 Text en Copyright © 2022 Jones et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Invertebrate Microbiology
Jones, Megan W.
Fricke, Laura C.
Thorpe, Cody J.
Vander Esch, Lauren O.
Lindsey, Amelia R. I.
Infection Dynamics of Cotransmitted Reproductive Symbionts Are Mediated by Sex, Tissue, and Development
title Infection Dynamics of Cotransmitted Reproductive Symbionts Are Mediated by Sex, Tissue, and Development
title_full Infection Dynamics of Cotransmitted Reproductive Symbionts Are Mediated by Sex, Tissue, and Development
title_fullStr Infection Dynamics of Cotransmitted Reproductive Symbionts Are Mediated by Sex, Tissue, and Development
title_full_unstemmed Infection Dynamics of Cotransmitted Reproductive Symbionts Are Mediated by Sex, Tissue, and Development
title_short Infection Dynamics of Cotransmitted Reproductive Symbionts Are Mediated by Sex, Tissue, and Development
title_sort infection dynamics of cotransmitted reproductive symbionts are mediated by sex, tissue, and development
topic Invertebrate Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275221/
https://www.ncbi.nlm.nih.gov/pubmed/35730939
http://dx.doi.org/10.1128/aem.00529-22
work_keys_str_mv AT jonesmeganw infectiondynamicsofcotransmittedreproductivesymbiontsaremediatedbysextissueanddevelopment
AT frickelaurac infectiondynamicsofcotransmittedreproductivesymbiontsaremediatedbysextissueanddevelopment
AT thorpecodyj infectiondynamicsofcotransmittedreproductivesymbiontsaremediatedbysextissueanddevelopment
AT vandereschlaureno infectiondynamicsofcotransmittedreproductivesymbiontsaremediatedbysextissueanddevelopment
AT lindseyameliari infectiondynamicsofcotransmittedreproductivesymbiontsaremediatedbysextissueanddevelopment