Cargando…
Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase
Heterocycles are the key structures in organic chemistry owing to their immense applications in the biological, chemical, and pharmaceutical fields. Heterocyclic compounds perform various noteworthy functions in nature, medication, innovation etc. Most frequently, pure nitrogen heterocycles or vario...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275557/ https://www.ncbi.nlm.nih.gov/pubmed/35919585 http://dx.doi.org/10.1039/d2ra03081k |
_version_ | 1784745511259996160 |
---|---|
author | Obaid, Rami J. Naeem, Nafeesa Mughal, Ehsan Ullah Al-Rooqi, Munirah M. Sadiq, Amina Jassas, Rabab S. Moussa, Ziad Ahmed, Saleh A. |
author_facet | Obaid, Rami J. Naeem, Nafeesa Mughal, Ehsan Ullah Al-Rooqi, Munirah M. Sadiq, Amina Jassas, Rabab S. Moussa, Ziad Ahmed, Saleh A. |
author_sort | Obaid, Rami J. |
collection | PubMed |
description | Heterocycles are the key structures in organic chemistry owing to their immense applications in the biological, chemical, and pharmaceutical fields. Heterocyclic compounds perform various noteworthy functions in nature, medication, innovation etc. Most frequently, pure nitrogen heterocycles or various positional combinations of nitrogen, oxygen, and sulfur atoms in five or six-membered rings can be found. Inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes is a popular strategy for the management of numerous mental diseases. In this context, cholinesterase inhibitors are utilized to relieve the symptoms of neurological illnesses like dementia and Alzheimer's disease (AD). The present review focuses on various heterocyclic scaffolds and their role in designing and developing new potential AChE and BChE inhibitors to treat AD. Moreover, a detailed structure–activity relationship (SAR) has been established for the future discovery of novel drugs for the treatment of AD. Most of the heterocyclic motifs have been used in the design of new potent cholinesterase inhibitors. In this regard, this review is an endeavor to summarize the biological and chemical studies over the past decade (2010–2022) describing the pursuit of new N, O and S containing heterocycles which can offer a rich supply of promising AChE and BChE inhibitory activities. |
format | Online Article Text |
id | pubmed-9275557 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-92755572022-08-01 Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase Obaid, Rami J. Naeem, Nafeesa Mughal, Ehsan Ullah Al-Rooqi, Munirah M. Sadiq, Amina Jassas, Rabab S. Moussa, Ziad Ahmed, Saleh A. RSC Adv Chemistry Heterocycles are the key structures in organic chemistry owing to their immense applications in the biological, chemical, and pharmaceutical fields. Heterocyclic compounds perform various noteworthy functions in nature, medication, innovation etc. Most frequently, pure nitrogen heterocycles or various positional combinations of nitrogen, oxygen, and sulfur atoms in five or six-membered rings can be found. Inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes is a popular strategy for the management of numerous mental diseases. In this context, cholinesterase inhibitors are utilized to relieve the symptoms of neurological illnesses like dementia and Alzheimer's disease (AD). The present review focuses on various heterocyclic scaffolds and their role in designing and developing new potential AChE and BChE inhibitors to treat AD. Moreover, a detailed structure–activity relationship (SAR) has been established for the future discovery of novel drugs for the treatment of AD. Most of the heterocyclic motifs have been used in the design of new potent cholinesterase inhibitors. In this regard, this review is an endeavor to summarize the biological and chemical studies over the past decade (2010–2022) describing the pursuit of new N, O and S containing heterocycles which can offer a rich supply of promising AChE and BChE inhibitory activities. The Royal Society of Chemistry 2022-07-12 /pmc/articles/PMC9275557/ /pubmed/35919585 http://dx.doi.org/10.1039/d2ra03081k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Obaid, Rami J. Naeem, Nafeesa Mughal, Ehsan Ullah Al-Rooqi, Munirah M. Sadiq, Amina Jassas, Rabab S. Moussa, Ziad Ahmed, Saleh A. Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase |
title | Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase |
title_full | Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase |
title_fullStr | Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase |
title_full_unstemmed | Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase |
title_short | Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase |
title_sort | inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275557/ https://www.ncbi.nlm.nih.gov/pubmed/35919585 http://dx.doi.org/10.1039/d2ra03081k |
work_keys_str_mv | AT obaidramij inhibitorypotentialofnitrogenoxygenandsulfurcontainingheterocyclicscaffoldsagainstacetylcholinesteraseandbutyrylcholinesterase AT naeemnafeesa inhibitorypotentialofnitrogenoxygenandsulfurcontainingheterocyclicscaffoldsagainstacetylcholinesteraseandbutyrylcholinesterase AT mughalehsanullah inhibitorypotentialofnitrogenoxygenandsulfurcontainingheterocyclicscaffoldsagainstacetylcholinesteraseandbutyrylcholinesterase AT alrooqimunirahm inhibitorypotentialofnitrogenoxygenandsulfurcontainingheterocyclicscaffoldsagainstacetylcholinesteraseandbutyrylcholinesterase AT sadiqamina inhibitorypotentialofnitrogenoxygenandsulfurcontainingheterocyclicscaffoldsagainstacetylcholinesteraseandbutyrylcholinesterase AT jassasrababs inhibitorypotentialofnitrogenoxygenandsulfurcontainingheterocyclicscaffoldsagainstacetylcholinesteraseandbutyrylcholinesterase AT moussaziad inhibitorypotentialofnitrogenoxygenandsulfurcontainingheterocyclicscaffoldsagainstacetylcholinesteraseandbutyrylcholinesterase AT ahmedsaleha inhibitorypotentialofnitrogenoxygenandsulfurcontainingheterocyclicscaffoldsagainstacetylcholinesteraseandbutyrylcholinesterase |