Cargando…

Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis

While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203–205 in the SARS-CoV-2 nucleocapsid protein. Recreating a mutation found in the alpha and...

Descripción completa

Detalles Bibliográficos
Autores principales: Johnson, Bryan A., Zhou, Yiyang, Lokugamage, Kumari G., Vu, Michelle N., Bopp, Nathen, Crocquet-Valdes, Patricia A., Kalveram, Birte, Schindewolf, Craig, Liu, Yang, Scharton, Dionna, Plante, Jessica A., Xie, Xuping, Aguilar, Patricia, Weaver, Scott C., Shi, Pei-Yong, Walker, David H., Routh, Andrew L., Plante, Kenneth S., Menachery, Vineet D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275689/
https://www.ncbi.nlm.nih.gov/pubmed/35728038
http://dx.doi.org/10.1371/journal.ppat.1010627
_version_ 1784745542230736896
author Johnson, Bryan A.
Zhou, Yiyang
Lokugamage, Kumari G.
Vu, Michelle N.
Bopp, Nathen
Crocquet-Valdes, Patricia A.
Kalveram, Birte
Schindewolf, Craig
Liu, Yang
Scharton, Dionna
Plante, Jessica A.
Xie, Xuping
Aguilar, Patricia
Weaver, Scott C.
Shi, Pei-Yong
Walker, David H.
Routh, Andrew L.
Plante, Kenneth S.
Menachery, Vineet D.
author_facet Johnson, Bryan A.
Zhou, Yiyang
Lokugamage, Kumari G.
Vu, Michelle N.
Bopp, Nathen
Crocquet-Valdes, Patricia A.
Kalveram, Birte
Schindewolf, Craig
Liu, Yang
Scharton, Dionna
Plante, Jessica A.
Xie, Xuping
Aguilar, Patricia
Weaver, Scott C.
Shi, Pei-Yong
Walker, David H.
Routh, Andrew L.
Plante, Kenneth S.
Menachery, Vineet D.
author_sort Johnson, Bryan A.
collection PubMed
description While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203–205 in the SARS-CoV-2 nucleocapsid protein. Recreating a mutation found in the alpha and omicron variants in an early pandemic (WA-1) background, we find that the R203K+G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2. The R203K+G204R mutant corresponds with increased viral RNA and protein both in vitro and in vivo. Importantly, the R203K+G204R mutation increases nucleocapsid phosphorylation and confers resistance to inhibition of the GSK-3 kinase, providing a molecular basis for increased virus replication. Notably, analogous alanine substitutions at positions 203+204 also increase SARS-CoV-2 replication and augment phosphorylation, suggesting that infection is enhanced through ablation of the ancestral ‘RG’ motif. Overall, these results demonstrate that variant mutations outside spike are key components in SARS-CoV-2’s continued adaptation to human infection.
format Online
Article
Text
id pubmed-9275689
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-92756892022-07-13 Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis Johnson, Bryan A. Zhou, Yiyang Lokugamage, Kumari G. Vu, Michelle N. Bopp, Nathen Crocquet-Valdes, Patricia A. Kalveram, Birte Schindewolf, Craig Liu, Yang Scharton, Dionna Plante, Jessica A. Xie, Xuping Aguilar, Patricia Weaver, Scott C. Shi, Pei-Yong Walker, David H. Routh, Andrew L. Plante, Kenneth S. Menachery, Vineet D. PLoS Pathog Research Article While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203–205 in the SARS-CoV-2 nucleocapsid protein. Recreating a mutation found in the alpha and omicron variants in an early pandemic (WA-1) background, we find that the R203K+G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2. The R203K+G204R mutant corresponds with increased viral RNA and protein both in vitro and in vivo. Importantly, the R203K+G204R mutation increases nucleocapsid phosphorylation and confers resistance to inhibition of the GSK-3 kinase, providing a molecular basis for increased virus replication. Notably, analogous alanine substitutions at positions 203+204 also increase SARS-CoV-2 replication and augment phosphorylation, suggesting that infection is enhanced through ablation of the ancestral ‘RG’ motif. Overall, these results demonstrate that variant mutations outside spike are key components in SARS-CoV-2’s continued adaptation to human infection. Public Library of Science 2022-06-21 /pmc/articles/PMC9275689/ /pubmed/35728038 http://dx.doi.org/10.1371/journal.ppat.1010627 Text en © 2022 Johnson et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Johnson, Bryan A.
Zhou, Yiyang
Lokugamage, Kumari G.
Vu, Michelle N.
Bopp, Nathen
Crocquet-Valdes, Patricia A.
Kalveram, Birte
Schindewolf, Craig
Liu, Yang
Scharton, Dionna
Plante, Jessica A.
Xie, Xuping
Aguilar, Patricia
Weaver, Scott C.
Shi, Pei-Yong
Walker, David H.
Routh, Andrew L.
Plante, Kenneth S.
Menachery, Vineet D.
Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis
title Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis
title_full Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis
title_fullStr Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis
title_full_unstemmed Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis
title_short Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis
title_sort nucleocapsid mutations in sars-cov-2 augment replication and pathogenesis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275689/
https://www.ncbi.nlm.nih.gov/pubmed/35728038
http://dx.doi.org/10.1371/journal.ppat.1010627
work_keys_str_mv AT johnsonbryana nucleocapsidmutationsinsarscov2augmentreplicationandpathogenesis
AT zhouyiyang nucleocapsidmutationsinsarscov2augmentreplicationandpathogenesis
AT lokugamagekumarig nucleocapsidmutationsinsarscov2augmentreplicationandpathogenesis
AT vumichellen nucleocapsidmutationsinsarscov2augmentreplicationandpathogenesis
AT boppnathen nucleocapsidmutationsinsarscov2augmentreplicationandpathogenesis
AT crocquetvaldespatriciaa nucleocapsidmutationsinsarscov2augmentreplicationandpathogenesis
AT kalverambirte nucleocapsidmutationsinsarscov2augmentreplicationandpathogenesis
AT schindewolfcraig nucleocapsidmutationsinsarscov2augmentreplicationandpathogenesis
AT liuyang nucleocapsidmutationsinsarscov2augmentreplicationandpathogenesis
AT schartondionna nucleocapsidmutationsinsarscov2augmentreplicationandpathogenesis
AT plantejessicaa nucleocapsidmutationsinsarscov2augmentreplicationandpathogenesis
AT xiexuping nucleocapsidmutationsinsarscov2augmentreplicationandpathogenesis
AT aguilarpatricia nucleocapsidmutationsinsarscov2augmentreplicationandpathogenesis
AT weaverscottc nucleocapsidmutationsinsarscov2augmentreplicationandpathogenesis
AT shipeiyong nucleocapsidmutationsinsarscov2augmentreplicationandpathogenesis
AT walkerdavidh nucleocapsidmutationsinsarscov2augmentreplicationandpathogenesis
AT routhandrewl nucleocapsidmutationsinsarscov2augmentreplicationandpathogenesis
AT plantekenneths nucleocapsidmutationsinsarscov2augmentreplicationandpathogenesis
AT menacheryvineetd nucleocapsidmutationsinsarscov2augmentreplicationandpathogenesis