Cargando…

Importance of an Axial Ln(III)–F Bond across the Lanthanide Series and Single-Molecule Magnet Behavior in the Ce and Nd Analogues

[Image: see text] The recently reported compound [Dy(III)LF](CF(3)SO(3))(2)·H(2)O (L = 1,4,7,10-tetrakis(2-pyridylmethyl)-1,4,7,10-tetraaza-cyclododecane) displays a strong axial magnetic anisotropy, due to the short axial Dy–F bond, and single-molecule magnet (SMM) behavior. Following our earlier [...

Descripción completa

Detalles Bibliográficos
Autores principales: Regincós Martí, Emma, Canaj, Angelos B., Sharma, Tanu, Celmina, Anna, Wilson, Claire, Rajaraman, Gopalan, Murrie, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275778/
https://www.ncbi.nlm.nih.gov/pubmed/35727882
http://dx.doi.org/10.1021/acs.inorgchem.2c00556
_version_ 1784745563368980480
author Regincós Martí, Emma
Canaj, Angelos B.
Sharma, Tanu
Celmina, Anna
Wilson, Claire
Rajaraman, Gopalan
Murrie, Mark
author_facet Regincós Martí, Emma
Canaj, Angelos B.
Sharma, Tanu
Celmina, Anna
Wilson, Claire
Rajaraman, Gopalan
Murrie, Mark
author_sort Regincós Martí, Emma
collection PubMed
description [Image: see text] The recently reported compound [Dy(III)LF](CF(3)SO(3))(2)·H(2)O (L = 1,4,7,10-tetrakis(2-pyridylmethyl)-1,4,7,10-tetraaza-cyclododecane) displays a strong axial magnetic anisotropy, due to the short axial Dy–F bond, and single-molecule magnet (SMM) behavior. Following our earlier [Dy(III)LF](2+) work, herein we report the systematic structural and magnetic study of a family of [Ln(III)LF](CF(3)SO(3))(2)·H(2)O compounds (Ln(III) = 1-Ce, 2-Pr, 3-Nd, 4-Eu, 5-Tb, 6-Ho, 7-Er, 8-Tm, and 9-Yb). From this series, the Ce(III) and Nd(III) analogues show slow relaxation of the magnetization under an applied direct current magnetic field, which is modeled using a Raman process. Complete active space self-consistent field theoretical calculations are employed to understand the relaxation pathways in 1-Ce and 3-Nd and also reveal a large tunnel splitting for 5-Tb. Additional computational studies on model compounds where we remove the axial F(–) ligand, or replace F(–) with I(–), highlight the importance of the F(–) ligand in creating a strong axial crystal field for 1-Ce and 3-Nd and for promoting the SMM behavior. Importantly, this systematic study provides insight into the magnetic properties of these lighter lanthanide ions.
format Online
Article
Text
id pubmed-9275778
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-92757782022-07-13 Importance of an Axial Ln(III)–F Bond across the Lanthanide Series and Single-Molecule Magnet Behavior in the Ce and Nd Analogues Regincós Martí, Emma Canaj, Angelos B. Sharma, Tanu Celmina, Anna Wilson, Claire Rajaraman, Gopalan Murrie, Mark Inorg Chem [Image: see text] The recently reported compound [Dy(III)LF](CF(3)SO(3))(2)·H(2)O (L = 1,4,7,10-tetrakis(2-pyridylmethyl)-1,4,7,10-tetraaza-cyclododecane) displays a strong axial magnetic anisotropy, due to the short axial Dy–F bond, and single-molecule magnet (SMM) behavior. Following our earlier [Dy(III)LF](2+) work, herein we report the systematic structural and magnetic study of a family of [Ln(III)LF](CF(3)SO(3))(2)·H(2)O compounds (Ln(III) = 1-Ce, 2-Pr, 3-Nd, 4-Eu, 5-Tb, 6-Ho, 7-Er, 8-Tm, and 9-Yb). From this series, the Ce(III) and Nd(III) analogues show slow relaxation of the magnetization under an applied direct current magnetic field, which is modeled using a Raman process. Complete active space self-consistent field theoretical calculations are employed to understand the relaxation pathways in 1-Ce and 3-Nd and also reveal a large tunnel splitting for 5-Tb. Additional computational studies on model compounds where we remove the axial F(–) ligand, or replace F(–) with I(–), highlight the importance of the F(–) ligand in creating a strong axial crystal field for 1-Ce and 3-Nd and for promoting the SMM behavior. Importantly, this systematic study provides insight into the magnetic properties of these lighter lanthanide ions. American Chemical Society 2022-06-21 2022-07-04 /pmc/articles/PMC9275778/ /pubmed/35727882 http://dx.doi.org/10.1021/acs.inorgchem.2c00556 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Regincós Martí, Emma
Canaj, Angelos B.
Sharma, Tanu
Celmina, Anna
Wilson, Claire
Rajaraman, Gopalan
Murrie, Mark
Importance of an Axial Ln(III)–F Bond across the Lanthanide Series and Single-Molecule Magnet Behavior in the Ce and Nd Analogues
title Importance of an Axial Ln(III)–F Bond across the Lanthanide Series and Single-Molecule Magnet Behavior in the Ce and Nd Analogues
title_full Importance of an Axial Ln(III)–F Bond across the Lanthanide Series and Single-Molecule Magnet Behavior in the Ce and Nd Analogues
title_fullStr Importance of an Axial Ln(III)–F Bond across the Lanthanide Series and Single-Molecule Magnet Behavior in the Ce and Nd Analogues
title_full_unstemmed Importance of an Axial Ln(III)–F Bond across the Lanthanide Series and Single-Molecule Magnet Behavior in the Ce and Nd Analogues
title_short Importance of an Axial Ln(III)–F Bond across the Lanthanide Series and Single-Molecule Magnet Behavior in the Ce and Nd Analogues
title_sort importance of an axial ln(iii)–f bond across the lanthanide series and single-molecule magnet behavior in the ce and nd analogues
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275778/
https://www.ncbi.nlm.nih.gov/pubmed/35727882
http://dx.doi.org/10.1021/acs.inorgchem.2c00556
work_keys_str_mv AT regincosmartiemma importanceofanaxiallniiifbondacrossthelanthanideseriesandsinglemoleculemagnetbehaviorintheceandndanalogues
AT canajangelosb importanceofanaxiallniiifbondacrossthelanthanideseriesandsinglemoleculemagnetbehaviorintheceandndanalogues
AT sharmatanu importanceofanaxiallniiifbondacrossthelanthanideseriesandsinglemoleculemagnetbehaviorintheceandndanalogues
AT celminaanna importanceofanaxiallniiifbondacrossthelanthanideseriesandsinglemoleculemagnetbehaviorintheceandndanalogues
AT wilsonclaire importanceofanaxiallniiifbondacrossthelanthanideseriesandsinglemoleculemagnetbehaviorintheceandndanalogues
AT rajaramangopalan importanceofanaxiallniiifbondacrossthelanthanideseriesandsinglemoleculemagnetbehaviorintheceandndanalogues
AT murriemark importanceofanaxiallniiifbondacrossthelanthanideseriesandsinglemoleculemagnetbehaviorintheceandndanalogues