Cargando…
Opal: an implementation science tool for machine learning clinical decision support in anesthesia
Opal is the first published example of a full-stack platform infrastructure for an implementation science designed for ML in anesthesia that solves the problem of leveraging ML for clinical decision support. Users interact with a secure online Opal web application to select a desired operating room...
Autores principales: | Bishara, Andrew, Wong, Andrew, Wang, Linshanshan, Chopra, Manu, Fan, Wudi, Lin, Alan, Fong, Nicholas, Palacharla, Aditya, Spinner, Jon, Armstrong, Rachelle, Pletcher, Mark J., Lituiev, Dmytro, Hadley, Dexter, Butte, Atul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275816/ https://www.ncbi.nlm.nih.gov/pubmed/34837585 http://dx.doi.org/10.1007/s10877-021-00774-1 |
Ejemplares similares
-
Empowering study of breast cancer data with application of artificial intelligence technology: promises, challenges, and use cases
por: Panahiazar, Maryam, et al.
Publicado: (2021) -
Machine Learning Prediction of Liver Allograft Utilization From Deceased Organ Donors Using the National Donor Management Goals Registry
por: Bishara, Andrew M., et al.
Publicado: (2021) -
Assessment of a Deep Learning Model Based on Electronic Health Record Data to Forecast Clinical Outcomes in Patients With Rheumatoid Arthritis
por: Norgeot, Beau, et al.
Publicado: (2019) -
Automatic Labeling of Special Diagnostic Mammography Views from Images and DICOM Headers
por: Lituiev, Dmytro S., et al.
Publicado: (2018) -
Prediction of future healthcare expenses of patients from chest radiographs using deep learning: a pilot study
por: Sohn, Jae Ho, et al.
Publicado: (2022)