Cargando…
Increased signal-to-noise ratios within experimental field trials by regressing spatially distributed soil properties as principal components
Environmental variability poses a major challenge to any field study. Researchers attempt to mitigate this challenge through replication. Thus, the ability to detect experimental signals is determined by the degree of replication and the amount of environmental variation, noise, within the experimen...
Autores principales: | Berry, Jeffrey C, Qi, Mingsheng, Sonawane, Balasaheb V, Sheflin, Amy, Cousins, Asaph, Prenni, Jessica, Schachtman, Daniel P, Liu, Peng, Bart, Rebecca S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275819/ https://www.ncbi.nlm.nih.gov/pubmed/35819140 http://dx.doi.org/10.7554/eLife.70056 |
Ejemplares similares
-
Principal component regression for crop yield estimation
por: Suryanarayana, T M V, et al.
Publicado: (2016) -
Feature selection and causal analysis for microbiome studies in the presence of confounding using standardization
por: Goren, Emily, et al.
Publicado: (2021) -
An Eigenvalue test for spatial principal component analysis
por: Montano, V., et al.
Publicado: (2017) -
Sufficient principal component regression for pattern discovery in transcriptomic data
por: Ding, Lei, et al.
Publicado: (2022) -
Principal-component-based multivariate regression for genetic association studies of metabolic syndrome components
por: Mei, Hao, et al.
Publicado: (2010)