Cargando…

MicroRNA-1269 is downregulated in glioblastoma and its maturation is regulated by long non-coding RNA SLC16A1 Antisense RNA 1

MicroRNA-1269 (miR-1296) promotes esophageal cancer. However, its role in other cancers, such as glioblastoma (GBM) is unclear. We predicted that miR-1269 might interact with long non-coding RNA (lncRNA) SLC16A1 Antisense RNA 1 (SLC16A1-AS1), a critical player in GBM. We then studied the interaction...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Zhibin, Li, Heyang, Long, Yinbo, Liu, Rong, Ni, Xiaoguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275873/
https://www.ncbi.nlm.nih.gov/pubmed/35609320
http://dx.doi.org/10.1080/21655979.2022.2070581
Descripción
Sumario:MicroRNA-1269 (miR-1296) promotes esophageal cancer. However, its role in other cancers, such as glioblastoma (GBM) is unclear. We predicted that miR-1269 might interact with long non-coding RNA (lncRNA) SLC16A1 Antisense RNA 1 (SLC16A1-AS1), a critical player in GBM. We then studied the interaction between SLC16A1-AS1 and miR-1269 in GBM. In this study, paired GBM and non-tumor tissues were used to analyze the expression of SLC16A1-AS1 and premature and mature miR-1269. The interaction of SLC16A1-AS1 with premature miR-1269 was analyzed with RNA pull-down assay and dual-luciferase reporter assay. Cellular fractionation assay was applied to determine the subcellular location of SLC16A1-AS1. Overexpression assays were applied to determine the role of SLC16A1-AS1 in miR-1269 maturation. BrdU, Transwell and cell apoptosis assays were performed to analyze the role of SLC16A1-AS1 and miR-1269 in GBM cell proliferation, migration, and invasion. Interestingly, we observed the upregulation of premature miR-1269 and downregulation of mature miR-1269 in GBM. SLC16A1-AS1 was also overexpressed in GBM. The direct interaction of SLC16A1-AS1 with premature miR-1269 was observed. SLC16A1-AS1 suppressed miR-1269 maturation and promoted cell proliferation, migration, and invasion, and inhibited cell apoptosis, while miR-1269 displayed the opposite trend. SLC16A1-AS1 partly reversed the effects of miR-1269 on GBM cell proliferation, movement and apoptosis. Moreover, SLC16A1-AS1 overexpression increased the level of ki-67, CDK4 and Bcl-2 in LN-229 and LN-18 cells. However, miR-1269 could partly reverse the effect of SLC16A-AS1 on protein levels. Overall, miR-1269 is downregulated in GBM and its maturation is regulated by SLC16A1-AS1.