Cargando…

MicroRNA-582-3p targeting ribonucleotide reductase regulatory subunit M2 inhibits the tumorigenesis of hepatocellular carcinoma by regulating the Wnt/β-catenin signaling pathway

Hepatocellular carcinoma (HCC) is an important cause of death worldwide. MicroRNA (miRNA)-mediated gene silencing is involved in tumor biology. In this study, we aimed to elucidate the function and mechanism of action of miR-582-3p in HCC. We performed reverse transcription-quantitative polymerase c...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Hui, Li, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275912/
https://www.ncbi.nlm.nih.gov/pubmed/35609318
http://dx.doi.org/10.1080/21655979.2022.2078026
_version_ 1784745593975865344
author Xu, Hui
Li, Bin
author_facet Xu, Hui
Li, Bin
author_sort Xu, Hui
collection PubMed
description Hepatocellular carcinoma (HCC) is an important cause of death worldwide. MicroRNA (miRNA)-mediated gene silencing is involved in tumor biology. In this study, we aimed to elucidate the function and mechanism of action of miR-582-3p in HCC. We performed reverse transcription-quantitative polymerase chain reaction and western blotting to detect the expression levels of miR-582-3p, ribonucleotide reductase regulatory subunit M2 (RRM2), and markers of the Wnt/β-catenin signaling pathway (Wnt, Gsk-3β, β-catenin, and C-myc). The potential binding between miR-582-3p and RRM2 was confirmed using a dual-luciferase reporter assay. The proliferative and migratory capacities of the cells were evaluated using the cell counting kit-8 and wound-healing assays, respectively. Mouse models were used to validate the role of miR-582-3p in vivo. We observed the downregulation of miR-582-3p levels in HCC tumors and cell lines. Its upregulation in Huh7 and Hep 3B cells impaired their proliferation and migration, and the in vivo results showed suppressed tumor growth. Additionally, miR-582-3p upregulation also reduced the expression levels of Wnt, β-catenin, and C-myc, but enhanced the expression levels of glycogen synthase kinase-3β, both in vitro and in vivo. miR-582-3p targeted RRM2, and a negative correlation was observed in its expression patterns in HCC. Furthermore, RRM2 overexpression aggravated the proliferative and migratory capabilities of Hep3B and Huh7 cells and triggered Wnt/β-catenin signaling. However, miR-582-3p depleted RRM2 expression, thereby attenuating the oncogenic effects of RRM2. In conclusion, our results demonstrated that miR-582-3p binds to RRM2 to regulate the Wnt/β-catenin signaling pathway, thereby blocking the progression of HCC.
format Online
Article
Text
id pubmed-9275912
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-92759122022-07-13 MicroRNA-582-3p targeting ribonucleotide reductase regulatory subunit M2 inhibits the tumorigenesis of hepatocellular carcinoma by regulating the Wnt/β-catenin signaling pathway Xu, Hui Li, Bin Bioengineered Research Paper Hepatocellular carcinoma (HCC) is an important cause of death worldwide. MicroRNA (miRNA)-mediated gene silencing is involved in tumor biology. In this study, we aimed to elucidate the function and mechanism of action of miR-582-3p in HCC. We performed reverse transcription-quantitative polymerase chain reaction and western blotting to detect the expression levels of miR-582-3p, ribonucleotide reductase regulatory subunit M2 (RRM2), and markers of the Wnt/β-catenin signaling pathway (Wnt, Gsk-3β, β-catenin, and C-myc). The potential binding between miR-582-3p and RRM2 was confirmed using a dual-luciferase reporter assay. The proliferative and migratory capacities of the cells were evaluated using the cell counting kit-8 and wound-healing assays, respectively. Mouse models were used to validate the role of miR-582-3p in vivo. We observed the downregulation of miR-582-3p levels in HCC tumors and cell lines. Its upregulation in Huh7 and Hep 3B cells impaired their proliferation and migration, and the in vivo results showed suppressed tumor growth. Additionally, miR-582-3p upregulation also reduced the expression levels of Wnt, β-catenin, and C-myc, but enhanced the expression levels of glycogen synthase kinase-3β, both in vitro and in vivo. miR-582-3p targeted RRM2, and a negative correlation was observed in its expression patterns in HCC. Furthermore, RRM2 overexpression aggravated the proliferative and migratory capabilities of Hep3B and Huh7 cells and triggered Wnt/β-catenin signaling. However, miR-582-3p depleted RRM2 expression, thereby attenuating the oncogenic effects of RRM2. In conclusion, our results demonstrated that miR-582-3p binds to RRM2 to regulate the Wnt/β-catenin signaling pathway, thereby blocking the progression of HCC. Taylor & Francis 2022-05-24 /pmc/articles/PMC9275912/ /pubmed/35609318 http://dx.doi.org/10.1080/21655979.2022.2078026 Text en © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Paper
Xu, Hui
Li, Bin
MicroRNA-582-3p targeting ribonucleotide reductase regulatory subunit M2 inhibits the tumorigenesis of hepatocellular carcinoma by regulating the Wnt/β-catenin signaling pathway
title MicroRNA-582-3p targeting ribonucleotide reductase regulatory subunit M2 inhibits the tumorigenesis of hepatocellular carcinoma by regulating the Wnt/β-catenin signaling pathway
title_full MicroRNA-582-3p targeting ribonucleotide reductase regulatory subunit M2 inhibits the tumorigenesis of hepatocellular carcinoma by regulating the Wnt/β-catenin signaling pathway
title_fullStr MicroRNA-582-3p targeting ribonucleotide reductase regulatory subunit M2 inhibits the tumorigenesis of hepatocellular carcinoma by regulating the Wnt/β-catenin signaling pathway
title_full_unstemmed MicroRNA-582-3p targeting ribonucleotide reductase regulatory subunit M2 inhibits the tumorigenesis of hepatocellular carcinoma by regulating the Wnt/β-catenin signaling pathway
title_short MicroRNA-582-3p targeting ribonucleotide reductase regulatory subunit M2 inhibits the tumorigenesis of hepatocellular carcinoma by regulating the Wnt/β-catenin signaling pathway
title_sort microrna-582-3p targeting ribonucleotide reductase regulatory subunit m2 inhibits the tumorigenesis of hepatocellular carcinoma by regulating the wnt/β-catenin signaling pathway
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275912/
https://www.ncbi.nlm.nih.gov/pubmed/35609318
http://dx.doi.org/10.1080/21655979.2022.2078026
work_keys_str_mv AT xuhui microrna5823ptargetingribonucleotidereductaseregulatorysubunitm2inhibitsthetumorigenesisofhepatocellularcarcinomabyregulatingthewntbcateninsignalingpathway
AT libin microrna5823ptargetingribonucleotidereductaseregulatorysubunitm2inhibitsthetumorigenesisofhepatocellularcarcinomabyregulatingthewntbcateninsignalingpathway