Cargando…

Circular RNA hsa_circ_0057452 facilitates keloid progression by targeting the microRNA-1225-3p/AF4/FMR2 family member 4 axis

The circular RNA, hsa_circ_0057452, is highly expressed in keloids, but its specific mechanism of action remains unknown. The levels of hsa_circ_0057452, microRNA (miR)-1225-3p, and AF4/FMR2 family member 4 (AFF4) in keloid tissues and keloid fibroblasts (KFs) were determined using quantitative reve...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Hu, Hu, Zhen, Zhang, Xiangming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275943/
https://www.ncbi.nlm.nih.gov/pubmed/35706403
http://dx.doi.org/10.1080/21655979.2022.2084460
Descripción
Sumario:The circular RNA, hsa_circ_0057452, is highly expressed in keloids, but its specific mechanism of action remains unknown. The levels of hsa_circ_0057452, microRNA (miR)-1225-3p, and AF4/FMR2 family member 4 (AFF4) in keloid tissues and keloid fibroblasts (KFs) were determined using quantitative reverse transcription-polymerase chain reaction. Changes in KFs viability, proliferation, apoptosis, and migration were investigated using the cell counting kit-8, bromodeoxyuridine, flow cytometry, and Transwell assays. Luciferase, RNA immunoprecipitation, and RNA pull-down assays were performed to identify the binding relationship among hsa_circ_0057452, miR-1225-3p, and AFF4. We found that hsa_circ_0057452 and AFF4 expression levels were upregulated, whereas miR-1225-3p expression levels were downregulated in keloids. Knockdown of hsa_circ_0057452 or AFF4 suppressed the viability, proliferation, and migration of KFs and induced apoptosis, whereas hsa_circ_0057452 overexpression and miR-1225-3p knockdown showed the opposite trend. Furthermore, hsa_circ_0057452 affected the biological behavior of KFs by releasing AFF4 via sponging of miR-1225-3p. Therefore, our results show that hsa_circ_0057452 promotes keloid progression by targeting miR-1225-3p and regulating AFF4 levels.