Cargando…
The macrophage-associated microRNA-4715-3p / Gasdermin D axis potentially indicates fibrosis progression in nonalcoholic fatty liver disease: evidence from transcriptome and biological data
Nonalcoholic fatty liver disease (NAFLD) is highly possible to progress to cirrhosis, malignancy, and liver failure through fibrogenesis. The enormous potential of pathogenetic and therapeutic targets in NAFLD has been revealed. This study aimed to explore novel factors potentially indicating or med...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275955/ https://www.ncbi.nlm.nih.gov/pubmed/35521691 http://dx.doi.org/10.1080/21655979.2022.2072602 |
_version_ | 1784745606090063872 |
---|---|
author | Chen, Shuai Cai, Xiurong Liu, Yu Shen, Yu Guillot, Adrien Tacke, Frank Tang, Liming Liu, Hanyang |
author_facet | Chen, Shuai Cai, Xiurong Liu, Yu Shen, Yu Guillot, Adrien Tacke, Frank Tang, Liming Liu, Hanyang |
author_sort | Chen, Shuai |
collection | PubMed |
description | Nonalcoholic fatty liver disease (NAFLD) is highly possible to progress to cirrhosis, malignancy, and liver failure through fibrogenesis. The enormous potential of pathogenetic and therapeutic targets in NAFLD has been revealed. This study aimed to explore novel factors potentially indicating or mediating NAFLD progression. Multiple bulk and single-cell RNA sequencing datasets were used, in which landscapes of cell populations were clarified to characterize immune cell infiltration. Significantly high infiltration of macrophages (MPs) was discovered during NAFLD progression. Samples in bulk NASH datasets were regrouped by MP level. Highly differentially expressed genes (DEGs) were identified in the Ctrl vs. NASH comparison, low MP vs. high MP comparison, and the weighted gene co-expression network analysis (WGCNA) clusters. Eight hub genes were identified as promising targets by protein–protein interaction analysis and validated in fibrosis progression, microRNA (miR)–protein interactions were predicted, and the hub genes were verified in a free fatty acid (FFA)-induced macrophage injury model. The results showed that Gasdermin D (GSDMD) was upregulated with fibrosis progression in NAFLD and was associated with macrophage infiltration. In addition, a potential regulator (miR-4715-3p) was correlated with GSDMD. The miR-4715-3p/GSDMD axis potentially modulates macrophage-associated immunity and indicates fibrosis progression in NAFLD. |
format | Online Article Text |
id | pubmed-9275955 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-92759552022-07-13 The macrophage-associated microRNA-4715-3p / Gasdermin D axis potentially indicates fibrosis progression in nonalcoholic fatty liver disease: evidence from transcriptome and biological data Chen, Shuai Cai, Xiurong Liu, Yu Shen, Yu Guillot, Adrien Tacke, Frank Tang, Liming Liu, Hanyang Bioengineered Research Paper Nonalcoholic fatty liver disease (NAFLD) is highly possible to progress to cirrhosis, malignancy, and liver failure through fibrogenesis. The enormous potential of pathogenetic and therapeutic targets in NAFLD has been revealed. This study aimed to explore novel factors potentially indicating or mediating NAFLD progression. Multiple bulk and single-cell RNA sequencing datasets were used, in which landscapes of cell populations were clarified to characterize immune cell infiltration. Significantly high infiltration of macrophages (MPs) was discovered during NAFLD progression. Samples in bulk NASH datasets were regrouped by MP level. Highly differentially expressed genes (DEGs) were identified in the Ctrl vs. NASH comparison, low MP vs. high MP comparison, and the weighted gene co-expression network analysis (WGCNA) clusters. Eight hub genes were identified as promising targets by protein–protein interaction analysis and validated in fibrosis progression, microRNA (miR)–protein interactions were predicted, and the hub genes were verified in a free fatty acid (FFA)-induced macrophage injury model. The results showed that Gasdermin D (GSDMD) was upregulated with fibrosis progression in NAFLD and was associated with macrophage infiltration. In addition, a potential regulator (miR-4715-3p) was correlated with GSDMD. The miR-4715-3p/GSDMD axis potentially modulates macrophage-associated immunity and indicates fibrosis progression in NAFLD. Taylor & Francis 2022-05-06 /pmc/articles/PMC9275955/ /pubmed/35521691 http://dx.doi.org/10.1080/21655979.2022.2072602 Text en © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Paper Chen, Shuai Cai, Xiurong Liu, Yu Shen, Yu Guillot, Adrien Tacke, Frank Tang, Liming Liu, Hanyang The macrophage-associated microRNA-4715-3p / Gasdermin D axis potentially indicates fibrosis progression in nonalcoholic fatty liver disease: evidence from transcriptome and biological data |
title | The macrophage-associated microRNA-4715-3p / Gasdermin D axis potentially indicates fibrosis progression in nonalcoholic fatty liver disease: evidence from transcriptome and biological data |
title_full | The macrophage-associated microRNA-4715-3p / Gasdermin D axis potentially indicates fibrosis progression in nonalcoholic fatty liver disease: evidence from transcriptome and biological data |
title_fullStr | The macrophage-associated microRNA-4715-3p / Gasdermin D axis potentially indicates fibrosis progression in nonalcoholic fatty liver disease: evidence from transcriptome and biological data |
title_full_unstemmed | The macrophage-associated microRNA-4715-3p / Gasdermin D axis potentially indicates fibrosis progression in nonalcoholic fatty liver disease: evidence from transcriptome and biological data |
title_short | The macrophage-associated microRNA-4715-3p / Gasdermin D axis potentially indicates fibrosis progression in nonalcoholic fatty liver disease: evidence from transcriptome and biological data |
title_sort | macrophage-associated microrna-4715-3p / gasdermin d axis potentially indicates fibrosis progression in nonalcoholic fatty liver disease: evidence from transcriptome and biological data |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275955/ https://www.ncbi.nlm.nih.gov/pubmed/35521691 http://dx.doi.org/10.1080/21655979.2022.2072602 |
work_keys_str_mv | AT chenshuai themacrophageassociatedmicrorna47153pgasdermindaxispotentiallyindicatesfibrosisprogressioninnonalcoholicfattyliverdiseaseevidencefromtranscriptomeandbiologicaldata AT caixiurong themacrophageassociatedmicrorna47153pgasdermindaxispotentiallyindicatesfibrosisprogressioninnonalcoholicfattyliverdiseaseevidencefromtranscriptomeandbiologicaldata AT liuyu themacrophageassociatedmicrorna47153pgasdermindaxispotentiallyindicatesfibrosisprogressioninnonalcoholicfattyliverdiseaseevidencefromtranscriptomeandbiologicaldata AT shenyu themacrophageassociatedmicrorna47153pgasdermindaxispotentiallyindicatesfibrosisprogressioninnonalcoholicfattyliverdiseaseevidencefromtranscriptomeandbiologicaldata AT guillotadrien themacrophageassociatedmicrorna47153pgasdermindaxispotentiallyindicatesfibrosisprogressioninnonalcoholicfattyliverdiseaseevidencefromtranscriptomeandbiologicaldata AT tackefrank themacrophageassociatedmicrorna47153pgasdermindaxispotentiallyindicatesfibrosisprogressioninnonalcoholicfattyliverdiseaseevidencefromtranscriptomeandbiologicaldata AT tangliming themacrophageassociatedmicrorna47153pgasdermindaxispotentiallyindicatesfibrosisprogressioninnonalcoholicfattyliverdiseaseevidencefromtranscriptomeandbiologicaldata AT liuhanyang themacrophageassociatedmicrorna47153pgasdermindaxispotentiallyindicatesfibrosisprogressioninnonalcoholicfattyliverdiseaseevidencefromtranscriptomeandbiologicaldata AT chenshuai macrophageassociatedmicrorna47153pgasdermindaxispotentiallyindicatesfibrosisprogressioninnonalcoholicfattyliverdiseaseevidencefromtranscriptomeandbiologicaldata AT caixiurong macrophageassociatedmicrorna47153pgasdermindaxispotentiallyindicatesfibrosisprogressioninnonalcoholicfattyliverdiseaseevidencefromtranscriptomeandbiologicaldata AT liuyu macrophageassociatedmicrorna47153pgasdermindaxispotentiallyindicatesfibrosisprogressioninnonalcoholicfattyliverdiseaseevidencefromtranscriptomeandbiologicaldata AT shenyu macrophageassociatedmicrorna47153pgasdermindaxispotentiallyindicatesfibrosisprogressioninnonalcoholicfattyliverdiseaseevidencefromtranscriptomeandbiologicaldata AT guillotadrien macrophageassociatedmicrorna47153pgasdermindaxispotentiallyindicatesfibrosisprogressioninnonalcoholicfattyliverdiseaseevidencefromtranscriptomeandbiologicaldata AT tackefrank macrophageassociatedmicrorna47153pgasdermindaxispotentiallyindicatesfibrosisprogressioninnonalcoholicfattyliverdiseaseevidencefromtranscriptomeandbiologicaldata AT tangliming macrophageassociatedmicrorna47153pgasdermindaxispotentiallyindicatesfibrosisprogressioninnonalcoholicfattyliverdiseaseevidencefromtranscriptomeandbiologicaldata AT liuhanyang macrophageassociatedmicrorna47153pgasdermindaxispotentiallyindicatesfibrosisprogressioninnonalcoholicfattyliverdiseaseevidencefromtranscriptomeandbiologicaldata |