Cargando…
Circular RNA circPFKP suppresses the proliferation and metastasis of gastric cancer cell via sponging miR-644 and regulating ADAMTSL5 expression
The treatment of gastric cancer (GC) is extremely challenging; however, the specific pathogenesis of GC remains unclear. Circular RNAs (CircRNAs) are non-coding RNAs that can regulate gene expression both transcriptionally and post-transcriptionally. However, little is known about the circRNAs that...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275984/ https://www.ncbi.nlm.nih.gov/pubmed/35587154 http://dx.doi.org/10.1080/21655979.2022.2073001 |
Sumario: | The treatment of gastric cancer (GC) is extremely challenging; however, the specific pathogenesis of GC remains unclear. Circular RNAs (CircRNAs) are non-coding RNAs that can regulate gene expression both transcriptionally and post-transcriptionally. However, little is known about the circRNAs that are important in the progression of GC. This study identified significantly dysregulated circRNAs by analyzing gastric cancer patients and normal control tissues. The target gene was predicted using online bioinformatics tools and verified using RNA pull-down and luciferase reporter assays. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to evaluate gene and protein expression. The malignant behavior of GC cells was determined using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, wound healing assay, Transwell invasion assay, and flow cytometry. CircPFKP is downregulated in GC tissues, and overexpression of circPFKP inhibits malignant behavior in GC cells. Bioinformatics predicted that circPFKP could bind to miR-644, and miR-644 could target disintegrin-like and metalloprotease domain-containing thrombospondin type 1 motif-like 5 (ADAMTSL5). Overexpression of circPFKP enhances the expression of ADAMTSL5 by decreasing the expression of miR-644 to suppress the growth of xenograft GC tumors in vivo and in vitro. In conclusion, the circPFKP/miR-644/ADAMTSL5 regulatory pathway inhibited the malignant progression of GC. These findings may extend our understanding of the effects of circRNAs on cancer development and provide novel targets for the diagnosis of GC. |
---|