Cargando…
Knockout of circRNA single stranded interacting protein 1 (circRBMS1) played a protective role in myocardial ischemia-reperfusion injury though inhibition of miR-2355-3p/Mammalian Sterile20-like kinase 1 (MST1) axis
Evidence suggests circRBMS1 regulates mRNA to mediate cell apoptosis, inflammation, and oxidative stress in different diseases. MST1 is reported to be the target and activator of apoptosis-related molecules and signaling pathways. Hence, the present study aims to investigate the role of circ-RBMS1/m...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275998/ https://www.ncbi.nlm.nih.gov/pubmed/35611768 http://dx.doi.org/10.1080/21655979.2022.2068896 |
Sumario: | Evidence suggests circRBMS1 regulates mRNA to mediate cell apoptosis, inflammation, and oxidative stress in different diseases. MST1 is reported to be the target and activator of apoptosis-related molecules and signaling pathways. Hence, the present study aims to investigate the role of circ-RBMS1/miR-2355-3p/MST1 in the development of I/R injury. In vitro experiments showed increased circ-RBMS1 and decreased miR-2355-3p in H/R-induced HCMs. CircRBMS1 served as a sponge for miR-2355-3p and miR-2355-3p targeted MST1. Furthermore, knockout of circRBMS1 attenuated cell apoptosis, oxidized stress, and inflammation in H/R-induced HCMs. In vivo experiments indicated circRBMS1 knockdown attenuated cardiac function damage, cell apoptosis, oxidative stress injury and inflammatory response through miR-2355-3p/MST1 axis in mice. In summary, these results demonstrated circRBMS1 played a protective role in myocardial I/R injury though inhibition of miR-2355-3p/MST1 axis. It might provide a new therapeutic target for cardiac I/R injury. |
---|