Cargando…
Sitagliptin mitigates hypoxia/reoxygenation (H/R)-induced injury in cardiomyocytes by mediating sirtuin 3 (SIRT3) and autophagy
Potential ischemia/reperfusion (I/R) injuries are commonly induced during treatment of cardiovascular diseases, such as acute myocardial infarction (AMI). It is reported that oxidative stress and over-autophagy in cardiomyocytes are involved in the pathogenesis of I/R injury. Sitagliptin is an effec...
Autores principales: | Yang, Mao, Xi, Ningning, Gao, Meng, Yu, Yanwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276022/ https://www.ncbi.nlm.nih.gov/pubmed/35635037 http://dx.doi.org/10.1080/21655979.2022.2074109 |
Ejemplares similares
-
Thrombin Aggravates Hypoxia/Reoxygenation Injury of Cardiomyocytes by Activating an Autophagy Pathway-Mediated by SIRT1
por: Wang, Xiaoning, et al.
Publicado: (2021) -
Stachydrine ameliorates hypoxia reoxygenation injury of cardiomyocyte via enhancing SIRT1-Nrf2 pathway
por: Zhu, Xi, et al.
Publicado: (2023) -
Adiponectin Protects Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury by Suppressing Autophagy
por: Guo, Jia, et al.
Publicado: (2022) -
MicroRNA-494 suppresses hypoxia/reoxygenation-induced cardiomyocyte apoptosis and autophagy via the PI3K/AKT/mTOR signaling pathway by targeting SIRT1
por: Ning, Shuwei, et al.
Publicado: (2020) -
Salidroside mitigates hypoxia/reoxygenation injury by alleviating endoplasmic reticulum stress-induced apoptosis in H9c2 cardiomyocytes
por: Sun, Meng-Yao, et al.
Publicado: (2018)