Cargando…

Plumbagin relieves rheumatoid arthritis through nuclear factor kappa-B (NF-κB) pathway

This study aimed to explore the effects of plumbagin on rheumatoid arthritis (RA) and its mechanism. The RA cell model was simulated following the treatment of interleukin-1β (IL-1β). After the treatment of various concentrations of plumbagin, the impact of plumbagin on the cell viability was examin...

Descripción completa

Detalles Bibliográficos
Autores principales: Shu, Chang, Chen, Jun, Lv, Meiyan, Xi, Yiyuan, Zheng, Jujia, Xu, Xiangwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276045/
https://www.ncbi.nlm.nih.gov/pubmed/35653787
http://dx.doi.org/10.1080/21655979.2022.2081756
Descripción
Sumario:This study aimed to explore the effects of plumbagin on rheumatoid arthritis (RA) and its mechanism. The RA cell model was simulated following the treatment of interleukin-1β (IL-1β). After the treatment of various concentrations of plumbagin, the impact of plumbagin on the cell viability was examined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The collagen-induced arthritis (CIA) model was established using the solution of bovine type II collagen. Hematoxylin-eosin staining was used to observe the changes of ankle joint tissue, while enzyme-linked immunosorbent assay and western blot were applied to detect the level of inflammatory cytokines. Plumbagin inhibited the viability of human fibroblast-like synoviocytes (HFLS) at the concentration of 1 ~ 3.5 μM. The inhibitory effect of 1 μM plumbagin on cell proliferation was similar to that of methotrexate, the drug used as the positive control. Plumbagin downregulated the levels of inflammatory cytokines and matrix metalloproteinases (MMPs) in IL-1β-treated HFLS, and suppressed the activation of IκB and nuclear factor kappa-B (NF-κB) as well as the entry of p65 into the nucleus. It was also demonstrated in animal experiments that plumbagin inhibited the activation of NF-κB pathway, down-regulated the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and MMPs, and alleviated joint damage in CIA-modeled mice. Collectively speaking, plumbagin might down-regulate the levels of inflammatory cytokines and MMPs through inhibiting the activation of the NF-κB pathway, thereby attenuating RA-induced damage to cells and joints. Abbreviations: CIA: Collagen-induced arthritis; ELISA: Enzyme-linked immuno sorbent assay; HFLS: Human fibroblast-like synoviocytes; IL-6: Interleukin-6; IL-1β: Interleukin-1β; NF-κB: nuclear factor kappa-B; MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; MMPs: Matrix metalloproteinase; OD: Optical density; RA: Rheumatoid arthritis; SDS: Sodium dodecyl sulfate; SD: Standard deviation; TNF-α: Tumor necrosis factor-α; PVDF: Polyvinylidene fluoride.