Cargando…
Difluoromethylornithine (DFMO) and AMXT 1501 inhibit capsule biosynthesis in pneumococci
Polyamines are small cationic molecules that have been linked to various cellular processes including replication, translation, stress response and recently, capsule regulation in Streptococcus pneumoniae (Spn, pneumococcus). Pneumococcal-associated diseases such as pneumonia, meningitis, and sepsis...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276676/ https://www.ncbi.nlm.nih.gov/pubmed/35821246 http://dx.doi.org/10.1038/s41598-022-16007-7 |
_version_ | 1784745779443793920 |
---|---|
author | Ayoola, Moses B. Shack, Leslie A. Lee, Jung Hwa Lim, Juhyeon Eoh, Hyungjin Swiatlo, Edwin Phanstiel, Otto Nanduri, Bindu |
author_facet | Ayoola, Moses B. Shack, Leslie A. Lee, Jung Hwa Lim, Juhyeon Eoh, Hyungjin Swiatlo, Edwin Phanstiel, Otto Nanduri, Bindu |
author_sort | Ayoola, Moses B. |
collection | PubMed |
description | Polyamines are small cationic molecules that have been linked to various cellular processes including replication, translation, stress response and recently, capsule regulation in Streptococcus pneumoniae (Spn, pneumococcus). Pneumococcal-associated diseases such as pneumonia, meningitis, and sepsis are some of the leading causes of death worldwide and capsule remains the principal virulence factor of this versatile pathogen. α-Difluoromethyl-ornithine (DFMO) is an irreversible inhibitor of the polyamine biosynthesis pathway catalyzed by ornithine decarboxylase and has a long history in modulating cell growth, polyamine levels, and disease outcomes in eukaryotic systems. Recent evidence shows that DFMO can also target arginine decarboxylation. Interestingly, DFMO-treated cells often escape polyamine depletion via increased polyamine uptake from extracellular sources. Here, we examined the potential capsule-crippling ability of DFMO and the possible synergistic effects of the polyamine transport inhibitor, AMXT 1501, on pneumococci. We characterized the changes in pneumococcal metabolites in response to DFMO and AMXT 1501, and also measured the impact of DFMO on amino acid decarboxylase activities. Our findings show that DFMO inhibited pneumococcal polyamine and capsule biosynthesis as well as decarboxylase activities, albeit, at a high concentration. AMXT 1501 at physiologically relevant concentration could inhibit both polyamine and capsule biosynthesis, however, in a serotype-dependent manner. In summary, this study demonstrates the utility of targeting polyamine biosynthesis and transport for pneumococcal capsule inhibition. Since targeting capsule biosynthesis is a promising way for the eradication of the diverse and pathogenic pneumococcal strains, future work will identify small molecules similar to DFMO/AMXT 1501, which act in a serotype-independent manner. |
format | Online Article Text |
id | pubmed-9276676 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-92766762022-07-14 Difluoromethylornithine (DFMO) and AMXT 1501 inhibit capsule biosynthesis in pneumococci Ayoola, Moses B. Shack, Leslie A. Lee, Jung Hwa Lim, Juhyeon Eoh, Hyungjin Swiatlo, Edwin Phanstiel, Otto Nanduri, Bindu Sci Rep Article Polyamines are small cationic molecules that have been linked to various cellular processes including replication, translation, stress response and recently, capsule regulation in Streptococcus pneumoniae (Spn, pneumococcus). Pneumococcal-associated diseases such as pneumonia, meningitis, and sepsis are some of the leading causes of death worldwide and capsule remains the principal virulence factor of this versatile pathogen. α-Difluoromethyl-ornithine (DFMO) is an irreversible inhibitor of the polyamine biosynthesis pathway catalyzed by ornithine decarboxylase and has a long history in modulating cell growth, polyamine levels, and disease outcomes in eukaryotic systems. Recent evidence shows that DFMO can also target arginine decarboxylation. Interestingly, DFMO-treated cells often escape polyamine depletion via increased polyamine uptake from extracellular sources. Here, we examined the potential capsule-crippling ability of DFMO and the possible synergistic effects of the polyamine transport inhibitor, AMXT 1501, on pneumococci. We characterized the changes in pneumococcal metabolites in response to DFMO and AMXT 1501, and also measured the impact of DFMO on amino acid decarboxylase activities. Our findings show that DFMO inhibited pneumococcal polyamine and capsule biosynthesis as well as decarboxylase activities, albeit, at a high concentration. AMXT 1501 at physiologically relevant concentration could inhibit both polyamine and capsule biosynthesis, however, in a serotype-dependent manner. In summary, this study demonstrates the utility of targeting polyamine biosynthesis and transport for pneumococcal capsule inhibition. Since targeting capsule biosynthesis is a promising way for the eradication of the diverse and pathogenic pneumococcal strains, future work will identify small molecules similar to DFMO/AMXT 1501, which act in a serotype-independent manner. Nature Publishing Group UK 2022-07-12 /pmc/articles/PMC9276676/ /pubmed/35821246 http://dx.doi.org/10.1038/s41598-022-16007-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Ayoola, Moses B. Shack, Leslie A. Lee, Jung Hwa Lim, Juhyeon Eoh, Hyungjin Swiatlo, Edwin Phanstiel, Otto Nanduri, Bindu Difluoromethylornithine (DFMO) and AMXT 1501 inhibit capsule biosynthesis in pneumococci |
title | Difluoromethylornithine (DFMO) and AMXT 1501 inhibit capsule biosynthesis in pneumococci |
title_full | Difluoromethylornithine (DFMO) and AMXT 1501 inhibit capsule biosynthesis in pneumococci |
title_fullStr | Difluoromethylornithine (DFMO) and AMXT 1501 inhibit capsule biosynthesis in pneumococci |
title_full_unstemmed | Difluoromethylornithine (DFMO) and AMXT 1501 inhibit capsule biosynthesis in pneumococci |
title_short | Difluoromethylornithine (DFMO) and AMXT 1501 inhibit capsule biosynthesis in pneumococci |
title_sort | difluoromethylornithine (dfmo) and amxt 1501 inhibit capsule biosynthesis in pneumococci |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276676/ https://www.ncbi.nlm.nih.gov/pubmed/35821246 http://dx.doi.org/10.1038/s41598-022-16007-7 |
work_keys_str_mv | AT ayoolamosesb difluoromethylornithinedfmoandamxt1501inhibitcapsulebiosynthesisinpneumococci AT shacklesliea difluoromethylornithinedfmoandamxt1501inhibitcapsulebiosynthesisinpneumococci AT leejunghwa difluoromethylornithinedfmoandamxt1501inhibitcapsulebiosynthesisinpneumococci AT limjuhyeon difluoromethylornithinedfmoandamxt1501inhibitcapsulebiosynthesisinpneumococci AT eohhyungjin difluoromethylornithinedfmoandamxt1501inhibitcapsulebiosynthesisinpneumococci AT swiatloedwin difluoromethylornithinedfmoandamxt1501inhibitcapsulebiosynthesisinpneumococci AT phanstielotto difluoromethylornithinedfmoandamxt1501inhibitcapsulebiosynthesisinpneumococci AT nanduribindu difluoromethylornithinedfmoandamxt1501inhibitcapsulebiosynthesisinpneumococci |