Cargando…

Electrical resistance of the current collector controls lithium morphology

The electrodeposition of low surface area lithium is critical to successful adoption of lithium metal batteries. Here, we discover the dependence of lithium metal morphology on electrical resistance of substrates, enabling us to design an alternative strategy for controlling lithium morphology and i...

Descripción completa

Detalles Bibliográficos
Autores principales: Oyakhire, Solomon T., Zhang, Wenbo, Shin, Andrew, Xu, Rong, Boyle, David T., Yu, Zhiao, Ye, Yusheng, Yang, Yufei, Raiford, James A., Huang, William, Schneider, Joel R., Cui, Yi, Bent, Stacey F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276694/
https://www.ncbi.nlm.nih.gov/pubmed/35821247
http://dx.doi.org/10.1038/s41467-022-31507-w
_version_ 1784745783942184960
author Oyakhire, Solomon T.
Zhang, Wenbo
Shin, Andrew
Xu, Rong
Boyle, David T.
Yu, Zhiao
Ye, Yusheng
Yang, Yufei
Raiford, James A.
Huang, William
Schneider, Joel R.
Cui, Yi
Bent, Stacey F.
author_facet Oyakhire, Solomon T.
Zhang, Wenbo
Shin, Andrew
Xu, Rong
Boyle, David T.
Yu, Zhiao
Ye, Yusheng
Yang, Yufei
Raiford, James A.
Huang, William
Schneider, Joel R.
Cui, Yi
Bent, Stacey F.
author_sort Oyakhire, Solomon T.
collection PubMed
description The electrodeposition of low surface area lithium is critical to successful adoption of lithium metal batteries. Here, we discover the dependence of lithium metal morphology on electrical resistance of substrates, enabling us to design an alternative strategy for controlling lithium morphology and improving electrochemical performance. By modifying the current collector with atomic layer deposited conductive (ZnO, SnO(2)) and resistive (Al(2)O(3)) nanofilms, we show that conductive films promote the formation of high surface area lithium deposits, whereas highly resistive films promote the formation of lithium clusters of low surface area. We reveal an electrodeposition mechanism in which radial diffusion of electroactive species is promoted on resistive substrates, resulting in lateral growth of large (150 µm in diameter) planar lithium deposits. Using resistive substrates, similar lithium morphologies are formed in three distinct classes of electrolytes, resulting in up to ten-fold improvement in battery performance. Ultimately, we report anode-free pouch cells using the Al(2)O(3)-modified copper that maintain 60 % of their initial discharge capacity after 100 cycles, displaying the benefits of resistive substrates for controlling lithium electrodeposition.
format Online
Article
Text
id pubmed-9276694
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-92766942022-07-14 Electrical resistance of the current collector controls lithium morphology Oyakhire, Solomon T. Zhang, Wenbo Shin, Andrew Xu, Rong Boyle, David T. Yu, Zhiao Ye, Yusheng Yang, Yufei Raiford, James A. Huang, William Schneider, Joel R. Cui, Yi Bent, Stacey F. Nat Commun Article The electrodeposition of low surface area lithium is critical to successful adoption of lithium metal batteries. Here, we discover the dependence of lithium metal morphology on electrical resistance of substrates, enabling us to design an alternative strategy for controlling lithium morphology and improving electrochemical performance. By modifying the current collector with atomic layer deposited conductive (ZnO, SnO(2)) and resistive (Al(2)O(3)) nanofilms, we show that conductive films promote the formation of high surface area lithium deposits, whereas highly resistive films promote the formation of lithium clusters of low surface area. We reveal an electrodeposition mechanism in which radial diffusion of electroactive species is promoted on resistive substrates, resulting in lateral growth of large (150 µm in diameter) planar lithium deposits. Using resistive substrates, similar lithium morphologies are formed in three distinct classes of electrolytes, resulting in up to ten-fold improvement in battery performance. Ultimately, we report anode-free pouch cells using the Al(2)O(3)-modified copper that maintain 60 % of their initial discharge capacity after 100 cycles, displaying the benefits of resistive substrates for controlling lithium electrodeposition. Nature Publishing Group UK 2022-07-09 /pmc/articles/PMC9276694/ /pubmed/35821247 http://dx.doi.org/10.1038/s41467-022-31507-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Oyakhire, Solomon T.
Zhang, Wenbo
Shin, Andrew
Xu, Rong
Boyle, David T.
Yu, Zhiao
Ye, Yusheng
Yang, Yufei
Raiford, James A.
Huang, William
Schneider, Joel R.
Cui, Yi
Bent, Stacey F.
Electrical resistance of the current collector controls lithium morphology
title Electrical resistance of the current collector controls lithium morphology
title_full Electrical resistance of the current collector controls lithium morphology
title_fullStr Electrical resistance of the current collector controls lithium morphology
title_full_unstemmed Electrical resistance of the current collector controls lithium morphology
title_short Electrical resistance of the current collector controls lithium morphology
title_sort electrical resistance of the current collector controls lithium morphology
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276694/
https://www.ncbi.nlm.nih.gov/pubmed/35821247
http://dx.doi.org/10.1038/s41467-022-31507-w
work_keys_str_mv AT oyakhiresolomont electricalresistanceofthecurrentcollectorcontrolslithiummorphology
AT zhangwenbo electricalresistanceofthecurrentcollectorcontrolslithiummorphology
AT shinandrew electricalresistanceofthecurrentcollectorcontrolslithiummorphology
AT xurong electricalresistanceofthecurrentcollectorcontrolslithiummorphology
AT boyledavidt electricalresistanceofthecurrentcollectorcontrolslithiummorphology
AT yuzhiao electricalresistanceofthecurrentcollectorcontrolslithiummorphology
AT yeyusheng electricalresistanceofthecurrentcollectorcontrolslithiummorphology
AT yangyufei electricalresistanceofthecurrentcollectorcontrolslithiummorphology
AT raifordjamesa electricalresistanceofthecurrentcollectorcontrolslithiummorphology
AT huangwilliam electricalresistanceofthecurrentcollectorcontrolslithiummorphology
AT schneiderjoelr electricalresistanceofthecurrentcollectorcontrolslithiummorphology
AT cuiyi electricalresistanceofthecurrentcollectorcontrolslithiummorphology
AT bentstaceyf electricalresistanceofthecurrentcollectorcontrolslithiummorphology