Cargando…
Multi-center validation of machine learning model for preoperative prediction of postoperative mortality
Accurate prediction of postoperative mortality is important for not only successful postoperative patient care but also for information-based shared decision-making with patients and efficient allocation of medical resources. This study aimed to create a machine-learning prediction model for 30-day...
Autores principales: | Lee, Seung Wook, Lee, Hyung-Chul, Suh, Jungyo, Lee, Kyung Hyun, Lee, Heonyi, Seo, Suryang, Kim, Tae Kyong, Lee, Sang-Wook, Kim, Yi-Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276734/ https://www.ncbi.nlm.nih.gov/pubmed/35821515 http://dx.doi.org/10.1038/s41746-022-00625-6 |
Ejemplares similares
-
Preoperative prediction of the need for arterial and central venous catheterization using machine learning techniques
por: Suh, Jungyo, et al.
Publicado: (2022) -
Machine learning-based prediction of acute kidney injury after nephrectomy in patients with renal cell carcinoma
por: Lee, Yeonhee, et al.
Publicado: (2021) -
An ensemble machine learning approach to predict postoperative mortality in older patients undergoing emergency surgery
por: Lee, Sang-Wook, et al.
Publicado: (2023) -
Prevalence and management status of urologic diseases in geriatric hospitals in South Korea: A field research
por: Lee, Sang Heon, et al.
Publicado: (2017) -
Corrigendum: Correction of the Acknowledgment.Prevalence and management status of urologic disease in geriatric hospitals in South Korea: A population-based analysis
por: Suh, Jungyo, et al.
Publicado: (2018)