Cargando…

Homeostasis of cell wall integrity pathway phosphorylation is required for the growth and pathogenicity of Magnaporthe oryzae

The cell wall provides a crucial barrier to stress imposed by the external environment. In the rice blast fungus Magnaporthe oryzae, this stress response is mediated by the cell wall integrity (CWI) pathway, consisting of a well‐characterized protein phosphorylation cascade. However, other regulator...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Yongchao, Liu, Xinyu, Shen, Lingbo, Wang, Nian, He, Yangjie, Zhang, Haifeng, Wang, Ping, Zhang, Zhengguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276948/
https://www.ncbi.nlm.nih.gov/pubmed/35506374
http://dx.doi.org/10.1111/mpp.13225
Descripción
Sumario:The cell wall provides a crucial barrier to stress imposed by the external environment. In the rice blast fungus Magnaporthe oryzae, this stress response is mediated by the cell wall integrity (CWI) pathway, consisting of a well‐characterized protein phosphorylation cascade. However, other regulators that maintain CWI phosphorylation homeostasis, such as protein phosphatases (PPases), remain unclear. Here, we identified two PPases, MoPtc1 and MoPtc2, that function as negative regulators of the CWI pathway. MoPtc1 and MoPtc2 interact with MoMkk1, one of the key components of the CWI pathway, and are crucial for the vegetative growth, conidial formation, and virulence of M. oryzae. We also demonstrate that both MoPtc1 and MoPtc2 dephosphorylate MoMkk1 in vivo and in vitro, and that CWI stress leads to enhanced interaction between MoPtc1 and MoMkk1. CWI stress abolishes the interaction between MoPtc2 and MoMkk1, providing a means of deactivation for CWI signalling. Our studies reveal that CWI signalling in M. oryzae is a highly coordinated regulatory mechanism vital for stress response and pathogenicity.