Cargando…
Improving Crowdsourcing-Based Image Classification Through Expanded Input Elicitation and Machine Learning
This work investigates how different forms of input elicitation obtained from crowdsourcing can be utilized to improve the quality of inferred labels for image classification tasks, where an image must be labeled as either positive or negative depending on the presence/absence of a specified object....
Autores principales: | Yasmin, Romena, Hassan, Md Mahmudulla, Grassel, Joshua T., Bhogaraju, Harika, Escobedo, Adolfo R., Fuentes, Olac |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276979/ https://www.ncbi.nlm.nih.gov/pubmed/35845435 http://dx.doi.org/10.3389/frai.2022.848056 |
Ejemplares similares
-
Crowdsourcing Team Formation With Worker-Centered Modeling
por: Vinella, Federica Lucia, et al.
Publicado: (2022) -
An Analysis of Music Perception Skills on Crowdsourcing Platforms
por: Samiotis, Ioannis Petros, et al.
Publicado: (2022) -
EXP-Crowd: A Gamified Crowdsourcing Framework for Explainability
por: Tocchetti, Andrea, et al.
Publicado: (2022) -
An Exploration of Stress: Leveraging Online Data from Crowdsourcing Platforms
por: Roddy, James, et al.
Publicado: (2021) -
Attitudes Toward Multilingualism in Luxembourg. A Comparative Analysis of Online News Comments and Crowdsourced Questionnaire Data
por: Purschke, Christoph
Publicado: (2020)