Cargando…

Machine learning diagnosis by immunoglobulin N‐glycan signatures for precision diagnosis of urological diseases

Early diagnosis of urological diseases is often difficult due to the lack of specific biomarkers. More powerful and less invasive biomarkers that can be used simultaneously to identify urological diseases could improve patient outcomes. The aim of this study was to evaluate a urological disease‐spec...

Descripción completa

Detalles Bibliográficos
Autores principales: Iwamura, Hiromichi, Mizuno, Kei, Akamatsu, Shusuke, Hatakeyama, Shingo, Tobisawa, Yuki, Narita, Shintaro, Narita, Takuma, Yamashita, Shinichi, Kawamura, Sadafumi, Sakurai, Toshihiko, Fujita, Naoki, Kodama, Hirotake, Noro, Daisuke, Kakizaki, Ikuko, Nakaji, Shigeyuki, Itoh, Ken, Tsuchiya, Norihiko, Ito, Akihiro, Habuchi, Tomonori, Ohyama, Chikara, Yoneyama, Tohru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277255/
https://www.ncbi.nlm.nih.gov/pubmed/35524940
http://dx.doi.org/10.1111/cas.15395
_version_ 1784745917074636800
author Iwamura, Hiromichi
Mizuno, Kei
Akamatsu, Shusuke
Hatakeyama, Shingo
Tobisawa, Yuki
Narita, Shintaro
Narita, Takuma
Yamashita, Shinichi
Kawamura, Sadafumi
Sakurai, Toshihiko
Fujita, Naoki
Kodama, Hirotake
Noro, Daisuke
Kakizaki, Ikuko
Nakaji, Shigeyuki
Itoh, Ken
Tsuchiya, Norihiko
Ito, Akihiro
Habuchi, Tomonori
Ohyama, Chikara
Yoneyama, Tohru
author_facet Iwamura, Hiromichi
Mizuno, Kei
Akamatsu, Shusuke
Hatakeyama, Shingo
Tobisawa, Yuki
Narita, Shintaro
Narita, Takuma
Yamashita, Shinichi
Kawamura, Sadafumi
Sakurai, Toshihiko
Fujita, Naoki
Kodama, Hirotake
Noro, Daisuke
Kakizaki, Ikuko
Nakaji, Shigeyuki
Itoh, Ken
Tsuchiya, Norihiko
Ito, Akihiro
Habuchi, Tomonori
Ohyama, Chikara
Yoneyama, Tohru
author_sort Iwamura, Hiromichi
collection PubMed
description Early diagnosis of urological diseases is often difficult due to the lack of specific biomarkers. More powerful and less invasive biomarkers that can be used simultaneously to identify urological diseases could improve patient outcomes. The aim of this study was to evaluate a urological disease‐specific scoring system established with a machine learning (ML) approach using Ig N‐glycan signatures. Immunoglobulin N‐glycan signatures were analyzed by capillary electrophoresis from 1312 serum subjects with hormone‐sensitive prostate cancer (n = 234), castration‐resistant prostate cancer (n = 94), renal cell carcinoma (n = 100), upper urinary tract urothelial cancer (n = 105), bladder cancer (n = 176), germ cell tumors (n = 73), benign prostatic hyperplasia (n = 95), urosepsis (n = 145), and urinary tract infection (n = 21) as well as healthy volunteers (n = 269). Immunoglobulin N‐glycan signature data were used in a supervised‐ML model to establish a scoring system that gave the probability of the presence of a urological disease. Diagnostic performance was evaluated using the area under the receiver operating characteristic curve (AUC). The supervised‐ML urologic disease‐specific scores clearly discriminated the urological diseases (AUC 0.78–1.00) and found a distinct N‐glycan pattern that contributed to detect each disease. Limitations included the retrospective and limited pathological information regarding urological diseases. The supervised‐ML urological disease‐specific scoring system based on Ig N‐glycan signatures showed excellent diagnostic ability for nine urological diseases using a one‐time serum collection and could be a promising approach for the diagnosis of urological diseases.
format Online
Article
Text
id pubmed-9277255
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-92772552022-07-15 Machine learning diagnosis by immunoglobulin N‐glycan signatures for precision diagnosis of urological diseases Iwamura, Hiromichi Mizuno, Kei Akamatsu, Shusuke Hatakeyama, Shingo Tobisawa, Yuki Narita, Shintaro Narita, Takuma Yamashita, Shinichi Kawamura, Sadafumi Sakurai, Toshihiko Fujita, Naoki Kodama, Hirotake Noro, Daisuke Kakizaki, Ikuko Nakaji, Shigeyuki Itoh, Ken Tsuchiya, Norihiko Ito, Akihiro Habuchi, Tomonori Ohyama, Chikara Yoneyama, Tohru Cancer Sci ORIGINAL ARTICLES Early diagnosis of urological diseases is often difficult due to the lack of specific biomarkers. More powerful and less invasive biomarkers that can be used simultaneously to identify urological diseases could improve patient outcomes. The aim of this study was to evaluate a urological disease‐specific scoring system established with a machine learning (ML) approach using Ig N‐glycan signatures. Immunoglobulin N‐glycan signatures were analyzed by capillary electrophoresis from 1312 serum subjects with hormone‐sensitive prostate cancer (n = 234), castration‐resistant prostate cancer (n = 94), renal cell carcinoma (n = 100), upper urinary tract urothelial cancer (n = 105), bladder cancer (n = 176), germ cell tumors (n = 73), benign prostatic hyperplasia (n = 95), urosepsis (n = 145), and urinary tract infection (n = 21) as well as healthy volunteers (n = 269). Immunoglobulin N‐glycan signature data were used in a supervised‐ML model to establish a scoring system that gave the probability of the presence of a urological disease. Diagnostic performance was evaluated using the area under the receiver operating characteristic curve (AUC). The supervised‐ML urologic disease‐specific scores clearly discriminated the urological diseases (AUC 0.78–1.00) and found a distinct N‐glycan pattern that contributed to detect each disease. Limitations included the retrospective and limited pathological information regarding urological diseases. The supervised‐ML urological disease‐specific scoring system based on Ig N‐glycan signatures showed excellent diagnostic ability for nine urological diseases using a one‐time serum collection and could be a promising approach for the diagnosis of urological diseases. John Wiley and Sons Inc. 2022-05-25 2022-07 /pmc/articles/PMC9277255/ /pubmed/35524940 http://dx.doi.org/10.1111/cas.15395 Text en © 2022 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle ORIGINAL ARTICLES
Iwamura, Hiromichi
Mizuno, Kei
Akamatsu, Shusuke
Hatakeyama, Shingo
Tobisawa, Yuki
Narita, Shintaro
Narita, Takuma
Yamashita, Shinichi
Kawamura, Sadafumi
Sakurai, Toshihiko
Fujita, Naoki
Kodama, Hirotake
Noro, Daisuke
Kakizaki, Ikuko
Nakaji, Shigeyuki
Itoh, Ken
Tsuchiya, Norihiko
Ito, Akihiro
Habuchi, Tomonori
Ohyama, Chikara
Yoneyama, Tohru
Machine learning diagnosis by immunoglobulin N‐glycan signatures for precision diagnosis of urological diseases
title Machine learning diagnosis by immunoglobulin N‐glycan signatures for precision diagnosis of urological diseases
title_full Machine learning diagnosis by immunoglobulin N‐glycan signatures for precision diagnosis of urological diseases
title_fullStr Machine learning diagnosis by immunoglobulin N‐glycan signatures for precision diagnosis of urological diseases
title_full_unstemmed Machine learning diagnosis by immunoglobulin N‐glycan signatures for precision diagnosis of urological diseases
title_short Machine learning diagnosis by immunoglobulin N‐glycan signatures for precision diagnosis of urological diseases
title_sort machine learning diagnosis by immunoglobulin n‐glycan signatures for precision diagnosis of urological diseases
topic ORIGINAL ARTICLES
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277255/
https://www.ncbi.nlm.nih.gov/pubmed/35524940
http://dx.doi.org/10.1111/cas.15395
work_keys_str_mv AT iwamurahiromichi machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases
AT mizunokei machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases
AT akamatsushusuke machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases
AT hatakeyamashingo machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases
AT tobisawayuki machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases
AT naritashintaro machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases
AT naritatakuma machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases
AT yamashitashinichi machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases
AT kawamurasadafumi machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases
AT sakuraitoshihiko machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases
AT fujitanaoki machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases
AT kodamahirotake machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases
AT norodaisuke machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases
AT kakizakiikuko machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases
AT nakajishigeyuki machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases
AT itohken machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases
AT tsuchiyanorihiko machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases
AT itoakihiro machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases
AT habuchitomonori machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases
AT ohyamachikara machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases
AT yoneyamatohru machinelearningdiagnosisbyimmunoglobulinnglycansignaturesforprecisiondiagnosisofurologicaldiseases