Cargando…
Learning Deficits Induced by High-Calorie Feeding in the Rat are Associated With Impaired Brain Kynurenine Pathway Metabolism
In addition to be a primary risk factor for type 2 diabetes and cardiovascular disease, obesity is associated with learning disabilities. Here we examined whether a dysregulation of the kynurenine pathway (KP) of tryptophan (Trp) metabolism might underlie the learning deficits exhibited by obese ind...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277427/ https://www.ncbi.nlm.nih.gov/pubmed/35846874 http://dx.doi.org/10.1177/11786469221111116 |
_version_ | 1784745978230734848 |
---|---|
author | Mezo-González, Carla Elena Daher Abdi, Amran Reyes-Castro, Luis Antonio Olvera Hernández, Sandra Almeida, Clarissa Croyal, Mikaël Aguesse, Audrey Gavioli, Elaine Cristina Zambrano, Elena Bolaños-Jiménez, Francisco |
author_facet | Mezo-González, Carla Elena Daher Abdi, Amran Reyes-Castro, Luis Antonio Olvera Hernández, Sandra Almeida, Clarissa Croyal, Mikaël Aguesse, Audrey Gavioli, Elaine Cristina Zambrano, Elena Bolaños-Jiménez, Francisco |
author_sort | Mezo-González, Carla Elena |
collection | PubMed |
description | In addition to be a primary risk factor for type 2 diabetes and cardiovascular disease, obesity is associated with learning disabilities. Here we examined whether a dysregulation of the kynurenine pathway (KP) of tryptophan (Trp) metabolism might underlie the learning deficits exhibited by obese individuals. The KP is initiated by the enzymatic conversion of Trp into kynurenine (KYN) by indoleamine 2,3-dioxygenase (IDO). KYN is further converted to several signaling molecules including quinolinic acid (QA) which has a negative impact on learning. Wistar rats were fed either standard chow or made obese by exposure to a free choice high-fat high-sugar (fcHFHS) diet. Their learning capacities were evaluated using a combination of the novel object recognition and the novel object location tasks, and the concentrations of Trp and KYN-derived metabolites in several brain regions determined by ultra-performance liquid chromatography-tandem mass spectrometry. Male, but not female, obese rats exhibited reduced learning capacity characterized by impaired encoding along with increased hippocampal concentrations of QA, Xanthurenic acid (XA), Nicotinamide (Nam), and oxidized Nicotinamide Adenine Dinucleotide (NAD+). In contrast, no differences were detected in the serum levels of Trp or KP metabolites. Moreover, obesity enhanced the expression in the hippocampus and frontal cortex of kynurenine monooxygenase (KMO), an enzyme involved in the production of QA from kynurenine. QA stimulates the glutamatergic system and its increased production leads to cognitive impairment. These results suggest that the deleterious effects of obesity on cognition are sex dependent and that altered KP metabolism might contribute to obesity-associated learning disabilities. |
format | Online Article Text |
id | pubmed-9277427 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-92774272022-07-14 Learning Deficits Induced by High-Calorie Feeding in the Rat are Associated With Impaired Brain Kynurenine Pathway Metabolism Mezo-González, Carla Elena Daher Abdi, Amran Reyes-Castro, Luis Antonio Olvera Hernández, Sandra Almeida, Clarissa Croyal, Mikaël Aguesse, Audrey Gavioli, Elaine Cristina Zambrano, Elena Bolaños-Jiménez, Francisco Int J Tryptophan Res Original Research Article In addition to be a primary risk factor for type 2 diabetes and cardiovascular disease, obesity is associated with learning disabilities. Here we examined whether a dysregulation of the kynurenine pathway (KP) of tryptophan (Trp) metabolism might underlie the learning deficits exhibited by obese individuals. The KP is initiated by the enzymatic conversion of Trp into kynurenine (KYN) by indoleamine 2,3-dioxygenase (IDO). KYN is further converted to several signaling molecules including quinolinic acid (QA) which has a negative impact on learning. Wistar rats were fed either standard chow or made obese by exposure to a free choice high-fat high-sugar (fcHFHS) diet. Their learning capacities were evaluated using a combination of the novel object recognition and the novel object location tasks, and the concentrations of Trp and KYN-derived metabolites in several brain regions determined by ultra-performance liquid chromatography-tandem mass spectrometry. Male, but not female, obese rats exhibited reduced learning capacity characterized by impaired encoding along with increased hippocampal concentrations of QA, Xanthurenic acid (XA), Nicotinamide (Nam), and oxidized Nicotinamide Adenine Dinucleotide (NAD+). In contrast, no differences were detected in the serum levels of Trp or KP metabolites. Moreover, obesity enhanced the expression in the hippocampus and frontal cortex of kynurenine monooxygenase (KMO), an enzyme involved in the production of QA from kynurenine. QA stimulates the glutamatergic system and its increased production leads to cognitive impairment. These results suggest that the deleterious effects of obesity on cognition are sex dependent and that altered KP metabolism might contribute to obesity-associated learning disabilities. SAGE Publications 2022-07-10 /pmc/articles/PMC9277427/ /pubmed/35846874 http://dx.doi.org/10.1177/11786469221111116 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Original Research Article Mezo-González, Carla Elena Daher Abdi, Amran Reyes-Castro, Luis Antonio Olvera Hernández, Sandra Almeida, Clarissa Croyal, Mikaël Aguesse, Audrey Gavioli, Elaine Cristina Zambrano, Elena Bolaños-Jiménez, Francisco Learning Deficits Induced by High-Calorie Feeding in the Rat are Associated With Impaired Brain Kynurenine Pathway Metabolism |
title | Learning Deficits Induced by High-Calorie Feeding in the Rat are
Associated With Impaired Brain Kynurenine Pathway Metabolism |
title_full | Learning Deficits Induced by High-Calorie Feeding in the Rat are
Associated With Impaired Brain Kynurenine Pathway Metabolism |
title_fullStr | Learning Deficits Induced by High-Calorie Feeding in the Rat are
Associated With Impaired Brain Kynurenine Pathway Metabolism |
title_full_unstemmed | Learning Deficits Induced by High-Calorie Feeding in the Rat are
Associated With Impaired Brain Kynurenine Pathway Metabolism |
title_short | Learning Deficits Induced by High-Calorie Feeding in the Rat are
Associated With Impaired Brain Kynurenine Pathway Metabolism |
title_sort | learning deficits induced by high-calorie feeding in the rat are
associated with impaired brain kynurenine pathway metabolism |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277427/ https://www.ncbi.nlm.nih.gov/pubmed/35846874 http://dx.doi.org/10.1177/11786469221111116 |
work_keys_str_mv | AT mezogonzalezcarlaelena learningdeficitsinducedbyhighcaloriefeedingintheratareassociatedwithimpairedbrainkynureninepathwaymetabolism AT daherabdiamran learningdeficitsinducedbyhighcaloriefeedingintheratareassociatedwithimpairedbrainkynureninepathwaymetabolism AT reyescastroluisantonio learningdeficitsinducedbyhighcaloriefeedingintheratareassociatedwithimpairedbrainkynureninepathwaymetabolism AT olverahernandezsandra learningdeficitsinducedbyhighcaloriefeedingintheratareassociatedwithimpairedbrainkynureninepathwaymetabolism AT almeidaclarissa learningdeficitsinducedbyhighcaloriefeedingintheratareassociatedwithimpairedbrainkynureninepathwaymetabolism AT croyalmikael learningdeficitsinducedbyhighcaloriefeedingintheratareassociatedwithimpairedbrainkynureninepathwaymetabolism AT aguesseaudrey learningdeficitsinducedbyhighcaloriefeedingintheratareassociatedwithimpairedbrainkynureninepathwaymetabolism AT gaviolielainecristina learningdeficitsinducedbyhighcaloriefeedingintheratareassociatedwithimpairedbrainkynureninepathwaymetabolism AT zambranoelena learningdeficitsinducedbyhighcaloriefeedingintheratareassociatedwithimpairedbrainkynureninepathwaymetabolism AT bolanosjimenezfrancisco learningdeficitsinducedbyhighcaloriefeedingintheratareassociatedwithimpairedbrainkynureninepathwaymetabolism |