Cargando…
Using Multi-Task Learning-Based Framework to Detect ST-Segment and J-Point Deviation From Holter
Artificial intelligence is increasingly being used on the clinical electrocardiogram workflows. Few electrocardiograms based on artificial intelligence algorithms have focused on detecting myocardial ischemia using long-term electrocardiogram data. A main reason for this is that interference signals...
Autores principales: | Wu, Shuang, Cao, Qing, Chen, Qiaoran, Jin, Qi, Liu, Zizhu, Zhuang, Lingfang, Lin, Jingsheng, Lv, Gang, Zhang, Ruiyan, Chen, Kang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277481/ https://www.ncbi.nlm.nih.gov/pubmed/35846006 http://dx.doi.org/10.3389/fphys.2022.912739 |
Ejemplares similares
-
Heritability of ECG Biomarkers in the Netherlands Twin Registry Measured from Holter ECGs
por: Hodkinson, Emily C., et al.
Publicado: (2016) -
High Proteoglycan Decorin Levels Are Associated With Acute Coronary Syndrome and Provoke an Imbalanced Inflammatory Response
por: Zhuang, Lingfang, et al.
Publicado: (2021) -
ST segment depression in hypertensive patients: A comparison of exercise test versus Holter ECG
por: Uen, Sakir, et al.
Publicado: (2008) -
Automatic tongue image quality assessment using a multi-task deep learning model
por: Xian, Huimin, et al.
Publicado: (2022) -
Interpretable Assessment of ST-Segment Deviation in ECG Time Series
por: Campero Jurado, Israel, et al.
Publicado: (2022)